G.GPE.A.3: Equations of Conics

1 What is the graph of the function \(y = \sqrt{4 - x^2} \)?
 1) a circle whose radius is 2 and whose center is at the origin
 2) a circle whose radius is 4 and whose center is at the origin
 3) the upper half of a circle whose radius is 2 and whose center is at the origin
 4) the upper half of a circle whose radius is 4 and whose center is at the origin

2 What is the axis of symmetry of the graph of the equation \(x = y^2 \)?
 1) \(x \)-axis
 2) \(y \)-axis
 3) line \(y = x \)
 4) line \(y = -x \)

3 The graph of the equation \(x^2 + y^2 = r^2 \) forms
 1) a circle
 2) a parabola
 3) a straight line
 4) two intersecting lines

4 The graph of the equation \(x^2 + y^2 = 4 \) can be described as a
 1) line passing through points (0,2) and (2,0)
 2) parabola with its vertex at (0,2)
 3) circle with its center at the origin and a radius of 2
 4) circle with its center at the origin and a radius of 4

5 When graphed on the coordinate plane, the equations \(y = 2x^2 + 4x + 5 \) and \(x^2 + y^2 = 36 \) form
 1) a parabola and a straight line
 2) a parabola and a circle
 3) two parabolas
 4) two circles

6 The graph of the equation \(2x^2 - 3y^2 = 4 \) forms
 1) a circle
 2) an ellipse
 3) a hyperbola
 4) a parabola

7 An object orbiting a planet travels in a path represented by the equation
 \(3(y + 1)^2 + 5(x + 4)^2 = 15 \). In which type of pattern does the object travel?
 1) hyperbola
 2) ellipse
 3) circle
 4) parabola

8 A commercial artist plans to include an ellipse in a design and wants the length of the horizontal axis to equal 10 and the length of the vertical axis to equal 6. Which equation could represent this ellipse?
 1) \(9x^2 + 25y^2 = 225 \)
 2) \(9x^2 - 25y^2 = 225 \)
 3) \(x^2 + y^2 = 100 \)
 4) \(3y = 20x^2 \)

9 Which equation, when graphed on a Cartesian coordinate plane, would best represent an elliptical racetrack?
 1) \(3x^2 + 10y^2 = 288,000 \)
 2) \(3x^2 - 10y^2 = 288,000 \)
 3) \(3x + 10y = 288,000 \)
 4) \(30xy = 288,000 \)
10 A designer who is planning to install an elliptical mirror is laying out the design on a coordinate grid. Which equation could represent the elliptical mirror?
 1) \(x^2 = 144 + 36y^2\)
 2) \(x^2 + y^2 = 144\)
 3) \(x^2 + 4y^2 = 144\)
 4) \(y = 4y^2 + 144\)

11 Which equation represents an ellipse?
 1) \(3x^2 = 4 - 5y^2\)
 2) \(4x^2 = 9 - 4y\)
 3) \(6x^2 = 9 + 8y^2\)
 4) \(xy = 12\)

12 Which graph represents the equation \(\frac{x^2}{4} + \frac{y^2}{4} = 1\)?

13 Which graph represents the equation \(9x^2 = 36 - 4y^2\)?
14. The accompanying diagram shows the elliptical orbit of a planet. The foci of the elliptical orbit are F_1 and F_2.

If a, b, and c are all positive and $a \neq b \neq c$, which equation could represent the path of the planet?

1) $ax^2 - by^2 = c^2$
2) $ax^2 + by^2 = c^2$
3) $y = ax^2 + c^2$
4) $x^2 + y^2 = c^2$

15. The accompanying diagram represents the elliptical path of a ride at an amusement park.

Which equation represents this path?

1) $x^2 + y^2 = 300$
2) $y = x^2 + 100x + 300$
3) $\frac{x^2}{150^2} + \frac{y^2}{50^2} = 1$
4) $\frac{x^2}{150^2} - \frac{y^2}{50^2} = 1$

16. The accompanying diagram shows the construction of a model of an elliptical orbit of a planet traveling around a star. Point P and the center of the star represent the foci of the orbit.

Which equation could represent the relation shown?

1) $\frac{x^2}{81} + \frac{y^2}{225} = 1$
2) $\frac{x^2}{225} + \frac{y^2}{81} = 1$
3) $\frac{x^2}{15} + \frac{y^2}{9} = 1$
4) $\frac{x^2}{15} - \frac{y^2}{9} = 1$
17 An architect is designing a building to include an arch in the shape of a semi-ellipse (half an ellipse), such that the width of the arch is 20 feet and the height of the arch is 8 feet, as shown in the accompanying diagram.

Which equation models this arch?

1) \(\frac{x^2}{100} + \frac{y^2}{64} = 1 \)
2) \(\frac{x^2}{400} + \frac{y^2}{64} = 1 \)
3) \(\frac{x^2}{64} + \frac{y^2}{100} = 1 \)
4) \(\frac{x^2}{64} + \frac{y^2}{400} = 1 \)

18 A landscape architect is working on the plans for a new horse farm. He is laying out the exercise ring and racetrack on the accompanying graph. The location of the circular exercise ring, with point R as its center, has already been plotted.

Write an equation that represents the outside edge of the exercise ring. The equation of the outside edge of the racetrack is \(\frac{x^2}{144} + \frac{y^2}{36} = 1 \). Sketch the outside edge of the racetrack on the graph.
G.GPE.A.3: Equations of Conics

Answer Section

1 ANS: 3 REF: 080804b
2 ANS: 1
 If you take the square root of both sides of the equation, it becomes $\pm \sqrt{x} = y$. A square root function and its reflection are symmetric about the x-axis.
 REF: 010419b
3 ANS: 1 REF: 010714a
4 ANS: 3 REF: 080528a
5 ANS: 2 REF: 080723a
6 ANS: 3 REF: 080920b
7 ANS: 2
 $3(y + 1)^2 + 5(x + 4)^2 = 15$
 \[
 \frac{(x + 4)^2}{3} + \frac{(y + 1)^2}{5} = 1
 \]
 REF: 080517b
8 ANS: 1
 The length of the semi-major axis is half of 10, or 5. So $a^2 = 5^2 = 25$. The length of the semi-minor axis is half of 6, or 3. So $b^2 = 3^2 = 9$.
 \[
 \frac{x^2}{25} + \frac{y^2}{9} = 1
 \]
 REF: 080318b
9 ANS: 1
 $3x^2 + 10y^2 = 288,000$
 \[
 \frac{x^2}{96,000} + \frac{y^2}{28,800} = 1
 \]
 REF: 060512b
10 ANS: 3
 $x^2 + 4y^2 = 144$
 \[
 \frac{x^2}{144} + \frac{y^2}{36} = 1
 \]
 REF: 080609b
11 ANS: 1 REF: 061020b
12 ANS: 1 REF: 019724siii
13 ANS: 1 REF: 010917b
14 ANS: 2 REF: 010410b
15 ANS: 3
The length of the semi-major axis is half of 300, or 150. The length of the semi-minor axis is half of 100, or 50.

REF: 060311b

16 ANS: 2
The length of the semi-major axis is 15. So $a^2 = 15^2 = 225$. The length of the semi-minor axis is 9. So $b^2 = 9^2 = 81$.

REF: 010517b

17 ANS: 1
The length of the semi-major axis is half of 20, or 10. So $a^2 = 10^2 = 100$. The length of the semi-minor axis is 8. So $b^2 = 8^2 = 64$.

REF: 080206b

18 ANS:
\[(x - 20)^2 + (y - 8)^2 = 16\] . The center of the circle is (20,8) and the radius is 4. Since $a^2 = 144$, the length of the semi-major axis is 12. Since $b^2 = 36$, the length of the semi-minor axis is 6.

REF: 060730b