F.IF.C.7: Graphing Logarithmic Functions

1	For which value of x is $y = \log x$ undefined?			
	1) 0	3)	π	
	2) $\frac{1}{10}$	4)	1.483	
2	2 The graph of $y = \log x$ lies in Quadrant(s)			
	1) I and II	3)	III and IV	
	2) II and III	4)	I and IV	
3	Which statement about the graph of $c(x) = \log_6 x$ is <i>false</i> ?			
	1) The asymptote has equation $y = 0$.	3)	The domain is the set of positive reals.	
	2) The graph has no <i>y</i> -intercept.	4)	The range is the set of all real numbers.	
4	4 Which statement below about the graph of $f(x) = -\log(x+4) + 2$ is true?			
	1) $f(x)$ has a y-intercept at (0,2).	3)	As $x \to \infty$, $f(x) \to \infty$.	
	2) $-f(x)$ has a <i>y</i> -intercept at (0,2).	4)	$x \to -4, f(x) \to \infty.$	
5	If $f(x) = \log_3 x$ and $g(x)$ is the image of $f(x)$ after a translation five units to the left, which equation represents			

- g(x)?
- 1) $g(x) = \log_3(x+5)$ 3) $g(x) = \log_3(x-5)$ 2) $g(x) = \log_3 x + 5$ 4) $g(x) = \log_3 x 5$
- 6 The graph of $y = \log_2 x$ is translated to the right 1 unit and down 1 unit. The coordinates of the *x*-intercept of the translated graph are
- 7 Which equation best represents the graph below?

- 1) $h(x) = \log(x+a) + c$
- 2) $h(x) = \log(x a) + c$

Regents Exam Questions F.IF.C.7: Graphing Logarithmic Functions Name: www.jmap.org

8 Which sketch shows the inverse of $y = a^x$, where a > 1?

9 The cells of a particular organism increase logarithmically. If *g* represents cell growth and *h* represents time, in hours, which graph best represents the growth pattern of the cells of this organism?

- when graph represents the function $\log_2 x = y$? (1,0) (1,0) (1,0) (1,0) (1,0) (1,0) (1,0) (1,0) (1,0) (1,0) (1,0) (2,0) (
- 10 Which graph represents the function $\log_2 x = y$?

11 Which sketch best represents the graph of $x = 3^{y}$?

12 If a function is defined by the equation $f(x) = 4^x$, which graph represents the inverse of this function?

13 Which sketch could represent the function $m(x) = -\log_{100}(x-2)$?

14 Sketch and label the graph of $y = 2^x$.

The graph of $y = 2^x$ is subject to each of these transformations:

- (1) reflection in the *y*-axis
- (2) reflection in the line y = x
- (3) translation: $(x,y) \rightarrow (x,y+1)$

Next to the appropriate numeral below, write the letter of the equation, chosen from the list below, that best described the image of $y = 2^x$ under each of the numbered transformations.

Equations

- (a) $y = \log_2 x$
- (b) $y = -2^x$
- (c) $y = 2^{-x}$
- (d) $y = 2^x + 1$
- (1)

(2)

(3)

15 Sketch the graph of the functions $f(x) = 3^x$ and $g(x) = \log_3 x$. Considering the graphs, describe the relationship between f(x) and g(x). Specify the domain and the range of g.

16 Sketch below the graph of $y = 4^x$. On the same set of axes, sketch the graph of $y = \log_4 x$.

17 Sketch and label the graph of the equation $y = \log x$ for all values of x in the interval $0.1 \le x \le 10$. On the same set of axes, reflect the graph drawn in the line y = x, and label it c. What is the equation of c?

18 Graph $f(x) = \log_2(x+6)$ on the set of axes below.

19 On the grid below, graph the function $y = \log_2(x-3) + 1$

20 Sketch $p(x) = -\log_2(x+3) + 2$ on the axes below.

Describe the end behavior of p(x) as $x \to -3$. Describe the end behavior of p(x) as $x \to \infty$

21 Graph $y = \log_2(x+3) - 5$ on the set of axes below. Use an appropriate scale to include *both* intercepts.

Describe the behavior of the given function as x approaches -3 and as x approaches positive infinity.

22 Graph the following function on the axes below.

State the domain of *f*. State the equation of the asymptote.

23 A hotel finds that its total annual revenue and the number of rooms occupied daily by guests can best be modeled by the function $R = 3 \log(n^2 + 10n)$, n > 0, where *R* is the total annual revenue, in millions of dollars, and *n* is the number of rooms occupied daily by guests. The hotel needs an annual revenue of \$12 million to be profitable. Graph the function on the accompanying grid over the interval $0 < n \le 100$. Calculate the minimum number of rooms that must be occupied daily to be profitable.

ID: A

F.IF.C.7: Graphing Logarithmic Functions Answer Section

1	ANS: 1	REF: 060301b
	ANS: 4	REF: 018535siii
2	ANS: 4 ANS: 1	KEF. 0105555III
5	AINS. 1 - 10 All Scratchpad マ	Î
	6.43 ♠	RAD 🔝 🗙
	I I	
	1	
		f2(x)=0 10 3
	-6.43 f1 (x)-	$=\log_6(x)$
	REF: 061618aii	
4		REF: 062215aii
5	ANS: 1	REF: 011902aii
6	ANS: 4	
	$\log_2(x-1) - 1 = 0$	
	$\log_{2}(x-1) = 1$	
	$x - 1 = 2^{1}$	
	x = 3	
	REF: 061819aii	
7	ANS: 1	REF: 062308aii
8	ANS: 3	REF: 011422a2
	ANS: 3	REF: 010420b
10	ANS: 1	REF: 061211a2
11	ANS: 2	REF: 081816aii
12	ANS: 2	
	$f^{-1}(x) = \log_4 x$	
	REF: fall0916a2	

13 ANS: 4

Translate the parent log function 2 to the right and reflect over the *x*-axis.

REF: 082207aii

14 ANS:

c, a, d

REF: 088539siii

15 ANS:

f(x) and g(x) are inverses of each other. The domain of g is the positive

reals and the range of g is the reals.

REF: 069039siii

REF: 019442siii

REF: 082333aii

REF: 061735aii

REF: 080530b