G.SRT.B.5: Side Splitter Theorem 1

1 In the diagram below of $\triangle CER$, $\overline{LA} \parallel \overline{CR}$.

If CL = 3.5, LE = 7.5, and EA = 9.5, what is the length of \overline{AR} , to the *nearest tenth*?

- 1) 5.5
- 2) 4.4
- 3) 3.0
- 4) 2.8
- 2 In right triangle *ABC* shown below, point *D* is on \overline{AB} and point *E* is on \overline{CB} such that $\overline{AC} \parallel \overline{DE}$.

If AB = 15, BC = 12, and EC = 7, what is the length of \overline{BD} ?

- 1) 8.75
- 2) 6.25
- 3) 5
- 4) 4

3 In triangle <u>ABC</u> below, <u>D</u> is a point on <u>AB</u> and <u>E</u> is a point on <u>AC</u>, such that <u>DE</u> || <u>BC</u>.

If AD = 12, DB = 8, and EC = 10, what is the length of \overline{AC} ? 1) 15

- 2) 22
- 3) 24
- 4) 25
- 4 In the diagram below of $\triangle PQR$, \overline{ST} is drawn parallel to \overline{PR} , PS = 2, SQ = 5, and TR = 5.

What is the length of \overline{QR} ?

1) 7 2) 2 3) $12\frac{1}{2}$ 4) $17\frac{1}{2}$

Name: _____

2

Regents Exam Questions G.SRT.B.5: Side Splitter Theorem 1 www.jmap.org

5 In the diagram below of $\triangle RST$, *L* is a point on \overline{RS} , and *M* is a point on \overline{RT} , such that $LM \parallel ST$.

If RL = 2, LS = 6, LM = 4, and ST = x + 2, what is the length of \overline{ST} ?

- 1) 10
- 2) 12
- 3) 14
- 4) 16
- 6 In the diagram of $\triangle ADC$ below, $\overline{EB} \parallel \overline{DC}$, AE = 9, ED = 5, and AB = 9.2.

What is the length of \overline{AC} , to the *nearest tenth*?

- 1) 5.1
- 2) 5.2
- 3) 14.3
- 4) 14.4

7 In the diagram of $\triangle ABC$ below, \overline{DE} is parallel to \overline{AB} , CD = 15, AD = 9, and AB = 40.

The length of \overline{DE} is

Name:

- 1) 15
- 2) 24
- 3) 25
- 4) 30
- 8 In the diagram below, triangle ACD has points B and E on sides \overline{AC} and \overline{AD} , respectively, such that $\overline{BE} \parallel \overline{CD}, AB = 1, BC = 3.5, \text{ and } AD = 18.$

What is the length of \overline{AE} , to the *nearest tenth*?

- 1) 14.0
- 2) 5.1
- 3) 3.3
 4) 4.0

- Regents Exam Questions G.SRT.B.5: Side Splitter Theorem 1 www.jmap.org
 - 9 In the diagram of $\triangle ABC$, points *D* and *E* are on \overline{AB} and \overline{CB} , respectively, such that $\overline{AC} \parallel \overline{DE}$.

If AD = 24, DB = 12, and DE = 4, what is the length of \overline{AC} ? 1) 8

- ()
- 2) 12
- 3) 16
- 4) 72
- 10 In the diagram of $\triangle ABC$ below, points *D* and *E* are on sides \overline{AB} and \overline{CB} respectively, such that $\overline{DE} \parallel \overline{AC}$.

If *EB* is 3 more than *DB*, AB = 14, and CB = 21, what is the length of \overline{AD} ?

- 1) 6
- 2) 8
- 3) 9
- 4) 12

11 In triangle *ABC*, points *D* and *E* are on sides \overline{AB} and \overline{BC} , respectively, such that $\overline{DE} \parallel \overline{AC}$, and AD:DB = 3:5.

If DB = 6.3 and AC = 9.4, what is the length of DE, to the *nearest tenth*?

- 1) 3.8
- 2) 5.6
- 3) 5.9
- 4) 15.7
- 12 In the diagram below of $\triangle ABC$, *D* is a point on \overline{BA} , *E* is a point on \overline{BC} , and \overline{DE} is drawn.

If BD = 5, DA = 12, and BE = 7, what is the length of \overline{BC} so that $\overline{AC} \parallel \overline{DE}$?

- 1) 23.8
- 2) 16.8
- 3) 15.6
- 4) 8.6

Regents Exam Questions G.SRT.B.5: Side Splitter Theorem 1 www.jmap.org

13 In the diagram of $\triangle SRA$ below, \overline{KP} is drawn such that $\angle SKP \cong \angle SRA$.

If $\underline{SK} = 10$, SP = 8, and PA = 6, what is the length

- of \overline{KR} , to the *nearest tenth*?
- 1) 4.8
- 2) 7.5
- 3) 8.0
- 4) 13.3

14 In the diagram below, \overline{BC} connects points B and C on the congruent sides of isosceles triangle ADE, such that $\triangle ABC$ is isosceles with vertex angle A.

If AB = 10, BD = 5, and DE = 12, what is the length of \overline{BC} ?

- 1) 6
- 2) 7
- 3) 8
- 4) 9
- 15 Given $\triangle MRO$ shown below, with trapezoid *PTRO*, MR = 9, MP = 2, and PO = 4.

What is the length of \overline{TR} ?

- 1) 4.5
- 2) 5
- 3) 3
- 4) 6

5

Regents Exam Questions G.SRT.B.5: Side Splitter Theorem 1 www.jmap.org

16 In the diagram below of $\triangle ABC$, \overline{TV} intersects \overline{AB} and \overline{AC} at points T and V respectively, and $m \angle ATV = m \angle ABC$.

If AT = 4, BC = 18, TB = 5, and AV = 6, what is the perimeter of quadrilateral *TBCV*?

- 1) 38.5
- 2) 39.5
- 3) 40.5
- 4) 44.9
- 17 In the diagram below, $\triangle ABC \sim \triangle ADE$.
 - B C

Which measurements are justified by this similarity?

- 1) AD = 3, AB = 6, AE = 4, and AC = 12
- 2) AD = 5, AB = 8, AE = 7, and AC = 10
- 3) AD = 3, AB = 9, AE = 5, and AC = 10
- 4) AD = 2, AB = 6, AE = 5, and AC = 15

18 In the diagram below of $\triangle ACT$, \overrightarrow{ES} is drawn parallel to \overrightarrow{AT} such that E is on \overrightarrow{CA} and S is on \overrightarrow{CT} .

Which statement is always true?

1)
$$\frac{CE}{CA} = \frac{CS}{ST}$$

2)
$$\frac{CE}{ES} = \frac{EA}{AT}$$

3)
$$\frac{CE}{EA} = \frac{CS}{ST}$$

4)
$$\frac{CE}{ST} = \frac{EA}{CS}$$

Name:

Regents Exam Questions G.SRT.B.5: Side Splitter Theorem 1 www.jmap.org

19 In $\triangle ABC$ below, \overline{DE} is drawn such that D and E are on \overline{AB} and \overline{AC} , respectively.

If $\overline{DE} \parallel \overline{BC}$, which equation will always be true?

- 1) $\frac{AD}{DE} = \frac{DB}{BC}$ 2) $\frac{AD}{DE} = \frac{AB}{BC}$
- 3) $\frac{AD}{BC} = \frac{DE}{DB}$
- 4) $\frac{AD}{BC} = \frac{DE}{AB}$

21 In the diagram below of right triangle *AED*, $\overline{BC} \parallel \overline{DE}$.

Which statement is always true?

l)	$\frac{AC}{BC} =$	$=\frac{DE}{AE}$
2)	$\frac{AB}{AD} =$	$=\frac{BC}{DE}$
3)	$\frac{AC}{CE} =$	$=\frac{BC}{DE}$
4)	$\frac{DE}{BC} =$	$=\frac{DB}{AB}$

- 22 In triangle <u>ABC</u> below, <u>D</u> is a point on <u>AB</u> and <u>E</u> is a point on <u>AC</u>, such that $\overline{DE} \parallel \overline{BC}$.
- X on side AB and point Y on side CB.

20 The diagram below shows triangle ABC with point

Which information is sufficient to prove that $\triangle BXY \sim \triangle BAC$?

- 1) $\angle B$ is a right angle.
- 2) \overline{XY} is parallel to \overline{AC} .
- 3) $\triangle ABC$ is isosceles.

4)
$$\overline{AX} \cong \overline{CY}$$

Which statement is always true?

- 1) $\angle ADE$ and $\angle ABC$ are right angles.
- 2) $\triangle ADE \sim \triangle ABC$

$$3) \quad DE = \frac{1}{2}BC$$

4) $\overline{AD} \cong \overline{DB}$

Regents Exam Questions G.SRT.B.5: Side Splitter Theorem 1 www.jmap.org

23 Triangle *ADF* is drawn and $\overline{BC} \parallel \overline{DF}$.

Which statement must be true?

- 1) $\frac{AB}{BC} = \frac{BD}{DF}$
- 2) $BC = \frac{1}{2}DF$
- 3) AB:AD = AC:CF

4)
$$\angle ACB \cong \angle AFD$$

24 In \triangle *CED* as shown below, points *A* and *B* are located on sides \overline{CE} and \overline{ED} , respectively. Line segment *AB* is drawn such that AE = 3.75, AC = 5, EB = 4.5, and BD = 6.

Explain why \overline{AB} is parallel to \overline{CD} .

25 In the diagram below, AE = 15, EB = 27, AF = 20, and FC = 36.

Explain why $\overline{EF} \parallel \overline{BC}$.

G.SRT.B.5: Side Splitter Theorem 1 Answer Section

1 ANS: 2 $\frac{7.5}{3.5} = \frac{9.5}{x}$ $x \approx 4.4$ REF: 012303geo 2 ANS: 2 $\frac{x}{15} = \frac{5}{12}$ *x* = 6.25 REF: 011906geo 3 ANS: 4 $\frac{x}{10} = \frac{12}{8}$ 15 + 10 = 25 *x* = 15 REF: 082314geo 4 ANS: 4 $\frac{5}{7} = \frac{x}{x+5}$ 12 $\frac{1}{2}$ + 5 = 17 $\frac{1}{2}$ 5x + 25 = 7x2x = 25 $x = 12\frac{1}{2}$ REF: 061821geo 5 ANS: 4 $\frac{2}{4} = \frac{8}{x+2}$ 14+2=16 2x + 4 = 32*x* = 14

REF: 012024geo

6 ANS: 3

$$\frac{9}{5} = \frac{9.2}{x}$$
 5.1 + 9.2 = 14.3
9x = 46
 $x \approx 5.1$
REF: 061511geo
7 ANS: 3
 $\frac{24}{40} = \frac{15}{x}$
24x = 600
 $x = 25$
REF: 011813geo
8 ANS: 4
 $\frac{1}{3.5} = \frac{x}{18-x}$
3.5x = 18 - x
4.5x = 18
 $x = 4$
REF: 081707geo
9 ANS: 2
 $\frac{12}{4} = \frac{36}{x}$
12x = 144
 $x = 12$
REF: 061621geo
10 ANS: 2
 $\frac{x}{x+3} = \frac{14}{21}$ 14 - 6 = 8
21x = 14x + 42
7x = 42
 $x = 6$

REF: 081812geo

11 ANS: 3

$$\frac{x}{6.3} = \frac{3}{5} \frac{y}{9.4} = \frac{6.3}{6.3 + 3.78}$$

$$x = 3.78 \quad y \approx 5.9$$
REF: 081816gco
12 ANS: 1

$$5x = 12 \cdot 7 \quad 16.8 + 7 = 23.8$$

$$5x = 84$$

$$x = 16.8$$
REF: 061911gco
13 ANS: 2

$$\frac{10}{x} = \frac{8}{6}$$

$$8x = 60$$

$$x = 7.5$$
REF: 012402gco
14 ANS: 3

$$\frac{10}{x} = \frac{15}{12}$$

$$x = 8$$
REF: 081918gco
15 ANS: 4

$$\frac{2}{4} = \frac{9 - x}{x}$$

$$36 - 4x = 2x$$

$$x = 6$$
REF: 061705gco
16 ANS: 4

$$\frac{4}{5} = \frac{6}{x} \quad \frac{4}{9} = \frac{y}{18} \quad 5 + 18 + 7.5 + 8 = 38.5$$

 $x = 7.5 \quad y = 8$

REF: 082222geo

17 ANS: 4 $\frac{2}{6} = \frac{5}{15}$ REF: 081517geo 18 ANS: 3 REF: 062307geo 19 ANS: 2 $\triangle ACB \sim \triangle AED$ REF: 012308geo 20 ANS: 2 If (2) is true, $\angle ACB \cong \angle XYB$ and $\angle CAB \cong \angle YXB$. REF: 082202geo 21 ANS: 2 $\triangle ACB \sim \triangle AED$ REF: 061811geo 22 ANS: 2 $\angle ADE \cong \angle ABC$ and $\angle AED \cong \angle ACB$ REF: 062214geo 23 ANS: 4 REF: 062321geo 24 ANS: $\frac{3.75}{5} = \frac{4.5}{6}$ \overline{AB} is parallel to \overline{CD} because \overline{AB} divides the sides proportionately. 39.375 = 39.375 REF: 061627geo 25 ANS: $\frac{15}{27} = \frac{20}{36}$ \overline{EF} is parallel to \overline{BC} because \overline{EF} divides the sides proportionately. 540 = 540

REF: 062431geo