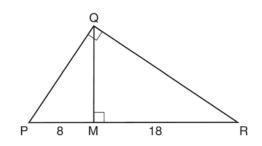
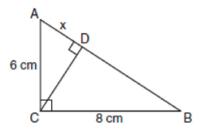

G.SRT.B.4: Similarity 2

1 In the diagram below of right triangle *ACB*, altitude \overline{CD} is drawn to hypotenuse \overline{AB} .


- If AB = 36 and AC = 12, what is the length of \overline{AD} ?
- 1) 32 2) 6
- 2) 0 3) 3
- 4) 4
- +) +
- 2 In the diagram below of right triangle ABC, \overline{CD} is the altitude to hypotenuse \overline{AB} , CB = 6, and AD = 5.

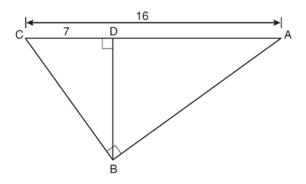
What is the length of \overline{BD} ?


- 1) 5
- 2) 9
- 3) 3
- 4) 4

3 In the diagram below, \overline{QM} is an altitude of right triangle PQR, PM = 8, and RM = 18.

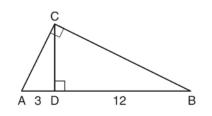
What is the length of \overline{QM} ?

- 1) 20
- 2) 16
- 3) 12
- 4) 10
- 4 In the diagram below, the length of the legs \overline{AC} and \overline{BC} of right triangle ABC are 6 cm and 8 cm, respectively. Altitude \overline{CD} is drawn to the hypotenuse of $\triangle ABC$.



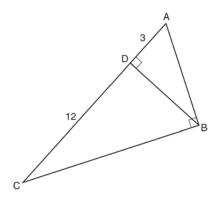
What is the length of *AD* to the *nearest tenth of a centimeter*?

- 1) 3.6
- 2) 6.0
- 3) 6.4
- 4) 4.0


Name:

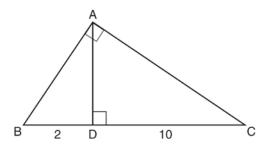
5 In the diagram below of right triangle *ABC*, altitude \overline{BD} is drawn to hypotenuse \overline{AC} , AC = 16, and CD = 7.

What is the length of *BD*?


- 1) $3\sqrt{7}$
- 2) $4\sqrt{7}$
- 3) $7\sqrt{3}$
- 4) 12
- 6 In the diagram below of right triangle *ABC*, altitude \overline{CD} is drawn to hypotenuse \overline{AB} .

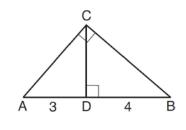
If AD = 3 and DB = 12, what is the length of altitude \overline{CD} ?

- 1) 6
- 2) $6\sqrt{5}$
- 3) 3
- 4) $3\sqrt{5}$


7 In right triangle *ABC* shown in the diagram below, altitude \overline{BD} is drawn to hypotenuse \overline{AC} , CD = 12, and AD = 3.

What is the length of \overline{AB} ?

Name:

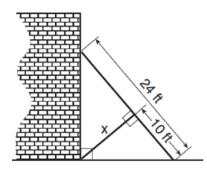

- 1) $5\sqrt{3}$
- 2) 6
- 3) $3\sqrt{5}$
- 4) 9
- 8 Triangle ABC shown below is a right triangle with altitude \overline{AD} drawn to the hypotenuse \overline{BC} .

If BD = 2 and DC = 10, what is the length of \overline{AB} ? 1) $2\sqrt{2}$ 2) $2\sqrt{5}$ 3) $2\sqrt{6}$

4) $2\sqrt{30}$

9 In the diagram below of right triangle *ABC*, \overline{CD} is the altitude to hypotenuse \overline{AB} , AD = 3, and DB = 4.

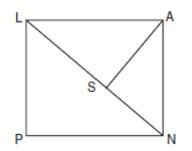
What is the length of \overline{CB} ?


- 1) $2\sqrt{3}$
- 2) $\sqrt{21}$
- 3) $2\sqrt{7}$
- 4) $4\sqrt{3}$
- 10 In $\triangle PQR$, $\angle PRQ$ is a right angle and \overline{RT} is drawn perpendicular to hypotenuse \overline{PQ} . If PT = x,

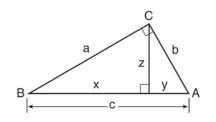
RT = 6, and TQ = 4x, what is the length of \overline{PQ} ?

- 1) 9
- 2) 12
- 3) 3
- 4) 15

Name:


11 The accompanying diagram shows a 24-foot ladder leaning against a building. A steel brace extends from the ladder to the point where the building meets the ground. The brace forms a right angle with the ladder.

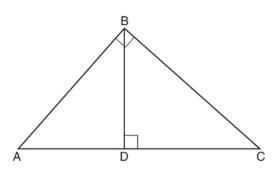
If the steel brace is connected to the ladder at a point that is 10 feet from the foot of the ladder, which equation can be used to find the length, x, of the steel brace?


- $1) \quad \frac{10}{x} = \frac{x}{14}$
- $2) \quad \frac{10}{x} = \frac{x}{24}$
- 3) $10^2 + x^2 = 14^2$
- 4) $10^2 + x^2 = 24^2$

12 The accompanying diagram shows part of the architectural plans for a structural support of a building. *PLAN* is a rectangle and $\overline{AS} \perp \overline{LN}$.

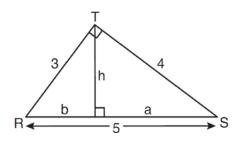
Which equation can be used to find the length of \overline{AS} ?

- 1) $\frac{LS}{AS} = \frac{AS}{SN}$ 2) $\frac{AN}{LN} = \frac{AS}{LS}$ 3) $\frac{AS}{SN} = \frac{AS}{LS}$
- 4) $\frac{AS}{LS} = \frac{LS}{SN}$
- 13 In the diagram below of right triangle ABC, an altitude is drawn to the hypotenuse \overline{AB} .

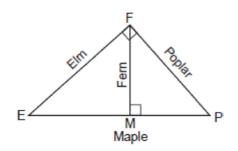


Which proportion would always represent a correct relationship of the segments?

- 1) $\frac{c}{z} = \frac{z}{y}$
- 2) $\frac{c}{a} = \frac{a}{y}$
- 3) $\frac{x}{z} = \frac{z}{y}$ (b) y b

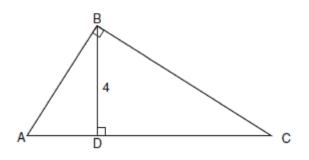

$$4) \quad \frac{y}{b} = \frac{b}{x}$$

14 In right triangle *ABC* shown below, altitude *BD* is drawn to hypotenuse \overline{AC} .

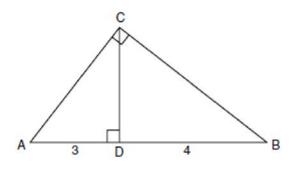


If AD = 8 and DC = 10, determine and state the length of \overline{AB} .

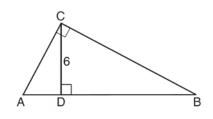
15 In the diagram below, $\triangle RST$ is a 3-4-5 right triangle. The altitude, *h*, to the hypotenuse has been drawn. Determine the length of *h*.



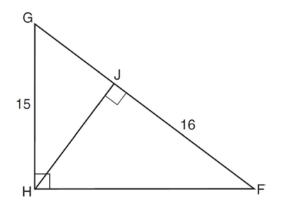
16 Four streets in a town are illustrated in the accompanying diagram. If the distance on Poplar Street from F to P is 12 miles and the distance on Maple Street from E to M is 10 miles, find the distance on Maple Street, in miles, from M to P.



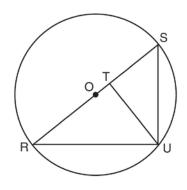
Name:


17 The drawing for a right triangular roof truss, represented by $\triangle ABC$, is shown in the accompanying diagram. If $\angle ABC$ is a right angle, altitude BD = 4 meters, and \overline{DC} is 6 meters longer than \overline{AD} , find the length of base \overline{AC} in meters.

18 In the diagram below of right triangle *ACB*, altitude \overline{CD} intersects \overline{AB} at *D*. If AD = 3 and DB = 4, find the length of \overline{CD} in simplest radical form.



19 In right triangle *ABC* below, \overline{CD} is the altitude to hypotenuse \overline{AB} . If CD = 6 and the ratio of AD to AB is 1:5, determine and state the length of \overline{BD} . [Only an algebraic solution can receive full credit.]


20 In right triangle *FGH* shown below, $m\angle GHF = 90$, altitude \overline{HJ} is drawn to \overline{FG} , FJ = 16, and HG = 15.

Name:

Determine and state the length of JG. Determine and state the length of \overline{HJ} . [Only algebraic solutions can receive full credit.]

21 In the diagram below, right triangle RSU is inscribed in circle *O*, and \overline{UT} is the altitude drawn to hypotenuse \overline{RS} . The length of \overline{RT} is 16 more than the length of \overline{TS} and TU = 15. Find the length of \overline{TS} . Find, in simplest radical form, the length of \overline{RU} .

G.SRT.B.4: Similarity 2 Answer Section

1 ANS: 4 Let $\overline{AD} = x$. $36x = 12^2$ *x* = 4 REF: 080922ge 2 ANS: 4 $6^2 = x(x+5)$ $36 = x^2 + 5x$ $0 = x^2 + 5x - 36$ 0 = (x+9)(x-4)*x* = 4 REF: 011123ge 3 ANS: 3 $x^2 = 8 \times 18$ $x^2 = 144$ *x* = 12 REF: 061506ge 4 ANS: 1 $\overline{AB} = 10$ since $\triangle ABC$ is a 6-8-10 triangle. $6^2 = 10x$ 3.6 = xREF: 060915ge 5 ANS: 1 $x^2 = 7(16 - 7)$ $x^2 = 63$ $x = \sqrt{9}\sqrt{7}$ $x = 3\sqrt{7}$ REF: 061128ge 6 ANS: 1 $x^2 = 3 \times 12$ *x* = 6 REF: 011308ge

7 ANS: 3 $x^{2} = 3 \times 12$. $\sqrt{6^{2} + 3^{2}} = \sqrt{45} = \sqrt{9}\sqrt{5} = 3\sqrt{5}$ x = 6REF: 061327ge 8 ANS: 3 $x^2 = 2(2+10)$ $x^2 = 24$ $x = \sqrt{24} = \sqrt{4}\sqrt{6} = 2\sqrt{6}$ REF: 081326ge 9 ANS: 3 $x^2 = 4 \cdot 7$ $x = \sqrt{4} \cdot \sqrt{7}$ $x = 2\sqrt{7}$ REF: 081528ge 10 ANS: 4 $x \cdot 4x = 6^2$. PQ = 4x + x = 5x = 5(3) = 15 $4x^2 = 36$ x = 3REF: 011227ge 11 ANS: 1 REF: 010619b 12 ANS: 1 REF: 010920b 13 ANS: 3 REF: 081410ge 14 ANS: $x^2 = 8(10+8)$ $x^2 = 144$ *x* = 12 REF: 061431ge 15 ANS: 2.4. $5a = 4^2$ $5b = 3^2$ $h^2 = ab$ a = 3.2 b = 1.8 $h^2 = 3.2 \cdot 1.8$ $h = \sqrt{5.76} = 2.4$

REF: 081037ge

16 ANS:

$$\frac{10+x}{12} = \frac{12}{x}$$

$$x(10+x) = 144$$
8. $x^2 + 10x - 144 = 0$

$$(x+18)(x-8) = 0$$

$$x = 8$$

REF: 060828b

17 ANS:

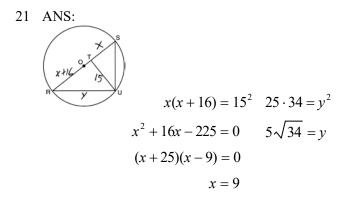
 $x(x+6) = 4^{2}$ 10. Let $\overline{AD} = x$. $\begin{array}{c} x^{2} + 6x - 16 = 0\\ (x+8)(x-2) = 0 \end{array}$. Since DC = 8, AC = 10. x = 2

REF: 080932b

18 ANS:

$$2\sqrt{3}$$
. $x^2 = 3 \cdot 4$
 $x = \sqrt{12} = 2\sqrt{3}$

REF: fall0829ge


- 19 ANS:
 - $4x \cdot x = 6^{2}$ $4x^{2} = 36$ $x^{2} = 9$ x = 3 $\overline{BD} = 4(3) = 12$

REF: 011437ge

20 ANS:

 $x(x+16) = 15^{2} \quad y^{2} = 16 \cdot 9$ $x^{2} + 16x - 225 = 0 \qquad y^{2} = 144$ $(x+25)(x-9) = 0 \qquad y = 12$ x = 9

REF: 011638ge

REF: 011538ge