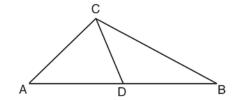
G.SRT.B.4: Medians, Altitudes and Bisectors

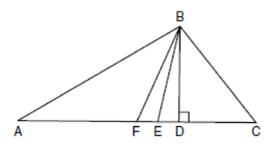
1 As shown in the diagram below, \overline{CD} is a median of $\triangle ABC$.



Which statement is *always* true?

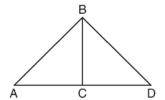
- 1) $\overline{AD} \cong \overline{DB}$
- 2) $\overline{AC} \cong \overline{AD}$
- 3) $\angle ACD \cong \angle CDB$
- 4) $\angle BCD \cong \angle ACD$

2 Given $\triangle ABC$ with base \overline{AFEDC} , median \overline{BF} , altitude \overline{BD} , and \overline{BE} bisects $\angle ABC$, which conclusion is valid?



- 1) $\angle FAB \cong \angle ABF$
- 2) $\angle ABF \cong \angle CBD$
- 3) $\overline{CE} \cong \overline{EA}$
- 4) $\overline{CF} \cong \overline{FA}$

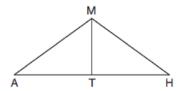
3 Given: $\triangle ABD$, \overline{BC} is the perpendicular bisector of \overline{AD}



Which statement can not always be proven?

- 1) $\overline{AC} \cong \overline{DC}$
- 2) $\overline{BC} \cong \overline{CD}$
- 3) $\angle ACB \cong \angle DCB$
- 4) $\triangle ABC \cong \triangle DBC$

4 In triangle \underline{MAH} below, \overline{MT} is the perpendicular bisector of \overline{AH} .



Which statement is *not* always true?

- 1) $\triangle MAH$ is isosceles.
- 2) $\triangle MAT$ is isosceles.
- 3) \overline{MT} bisects $\angle AMH$.
- 4) $\angle A$ and $\angle TMH$ are complementary.

G.SRT.B.4: Medians, Altitudes and Bisectors www.jmap.org

- 5 In $\triangle ABC$, D is a point on \overline{AC} such that \overline{BD} is a median. Which statement must be true?
 - 1) $\triangle ABD \cong \triangle CBD$
 - 2) $\angle ABD \cong \angle CBD$
 - 3) $\overline{AD} \cong \overline{CD}$
 - 4) $\overline{BD} \perp \overline{AC}$
- 6 Segment AB is the perpendicular bisector of \overline{CD} at point M. Which statement is always true?
 - 1) $\overline{CB} \cong \overline{DB}$
 - 2) $\overline{CD} \cong \overline{AB}$
 - 3) $\triangle ACD \sim \triangle BCD$
 - 4) $\triangle ACM \sim \triangle BCM$
- 7 In $\triangle ABC$, \overline{BD} is the perpendicular bisector of \overline{ADC} . Based upon this information, which statements below can be proven?
 - I. \overline{BD} is a median.
 - II. \overline{BD} bisects $\angle ABC$.
 - III. $\triangle ABC$ is isosceles.
 - 1) I and II, only
 - 2) I and III, only
 - 3) II and III, only
 - 4) I, II, and III
- 8 In isosceles $\triangle MNP$, line segment *NO* bisects vertex $\angle MNP$, as shown below. If MP = 16, find the length of \overline{MO} and explain your answer.

G.SRT.B.4: Medians, Altitudes and Bisectors Answer Section

1 ANS: 1 REF: 011303ge

2 ANS: 4

Median \overline{BF} bisects \overline{AC} so that $\overline{CF} \cong \overline{FA}$.

REF: fall0810ge

3 ANS: 2 REF: 081301ge 4 ANS: 2 REF: 012012geo 5 ANS: 3 REF: 080608b 6 ANS: 1 REF: 012316geo 7 ANS: 4 REF: 081822geo

8 ANS:

 $\triangle MNO$ is congruent to $\triangle PNO$ by SAS. Since $\triangle MNO \cong \triangle PNO$, then $\overline{MO} \cong \overline{PO}$ by CPCTC. So \overline{NO} must divide \overline{MP} in half, and MO = 8.

REF: fall1405geo