Regents Exam Questions

G.GPE.B.5: Parallel and Perpendicular Lines 6 www.jmap.org

G.GPE.B.5: Parallel and Perpendicular Lines 6

1 What is an equation of the line that passes through the point $(-2,5)$ and is perpendicular to the line whose equation is $y=\frac{1}{2} x+5$?

1) $y=2 x+1$
2) $y=-2 x+1$
3) $y=2 x+9$
4) $y=-2 x-9$

2 What is an equation of the line that is perpendicular
to the line whose equation is $y=\frac{3}{5} x-2$ and that passes through the point $(3,-6)$?

1) $y=\frac{5}{3} x-11$
2) $y=-\frac{5}{3} x+11$
3) $y=-\frac{5}{3} x-1$
4) $y=\frac{5}{3} x+1$

3 What is the equation of the line that passes through the point $(-9,6)$ and is perpendicular to the line $y=3 x-5$?

1) $y=3 x+21$
2) $y=-\frac{1}{3} x-3$
3) $y=3 x+33$
4) $y=-\frac{1}{3} x+3$

4 What is an equation of the line that contains the point $(3,-1)$ and is perpendicular to the line whose equation is $y=-3 x+2$? 1) $y=-3 x+8$
2) $y=-3 x$
3) $y=\frac{1}{3} x$
4) $y=\frac{1}{3} x-2$

1 What is $-2,5)$ and is pergh

Name: \qquad

5 The equation of a line is $y=\frac{2}{3} x+5$. What is an equation of the line that is perpendicular to the given line and that passes through the point $(4,2)$?

1) $y=\frac{2}{3} x-\frac{2}{3}$
2) $y=\frac{3}{2} x-4$
3) $y=-\frac{3}{2} x+7$
4) $y=-\frac{3}{2} x+8$

6 What is an equation of the line that passes through $(-9,12)$ and is perpendicular to the line whose equation is $y=\frac{1}{3} x+6$?

1) $y=\frac{1}{3} x+15$
2) $y=-3 x-15$
3) $y=\frac{1}{3} x-13$
4) $y=-3 x+27$

7 An equation of a line perpendicular to the line represented by the equation $y=-\frac{1}{2} x-5$ and passing through $(6,-4)$ is

1) $y=-\frac{1}{2} x+4$
2) $y=-\frac{1}{2} x-1$
3) $y=2 x+14$
4) $y=2 x-16$

8 Which equation represents the line that is perpendicular to $2 y=x+2$ and passes through the point $(4,3)$?

1) $y=\frac{1}{2} x-5$
2) $y=\frac{1}{2} x+1$
3) $y=-2 x+11$
4) $y=-2 x-5$

Regents Exam Questions

G.GPE.B.5: Parallel and Perpendicular Lines 6

 www.jmap.org9 What is an equation of the line that passes through the point $(2,4)$ and is perpendicular to the line whose equation is $3 y=6 x+3$?

1) $y=-\frac{1}{2} x+5$
2) $y=-\frac{1}{2} x+4$
3) $y=2 x-6$
4) $y=2 x$

10 What is an equation of a line that is perpendicular to the line whose equation is $2 y=3 x-10$ and passes through $(-6,1)$?

1) $y=-\frac{2}{3} x-5$
2) $y=-\frac{2}{3} x-3$
3) $y=\frac{2}{3} x+1$
4) $y=\frac{2}{3} x+10$

11 What is an equation of the line that passes through the point $(6,8)$ and is perpendicular to a line with equation $y=\frac{3}{2} x+5$?

1) $y-8=\frac{3}{2}(x-6)$
2) $y-8=-\frac{2}{3}(x-6)$
3) $y+8=\frac{3}{2}(x+6)$
4) $y+8=-\frac{2}{3}(x+6)$

12 Which equation represents the line that passes through the point $(2,-7)$ and is perpendicular to the line whose equation is $y=\frac{3}{4} x+4$?

1) $y+7=\frac{3}{4}(x-2)$
2) $y-7=\frac{3}{4}(x+2)$
3) $y+7=-\frac{4}{3}(x-2)$
4) $y-7=-\frac{4}{3}(x+2)$

13 An equation of the line perpendicular to the line whose equation is $4 x-5 y=6$ and passes through the point $(-2,3)$ is

1) $y+3=-\frac{5}{4}(x-2)$
2) $y-3=-\frac{5}{4}(x+2)$
3) $y+3=\frac{4}{5}(x-2)$
4) $y-3=\frac{4}{5}(x+2)$

14 What is an equation of a line which passes through $(6,9)$ and is perpendicular to the line whose equation is $4 x-6 y=15$?

1) $y-9=-\frac{3}{2}(x-6)$
2) $y-9=\frac{2}{3}(x-6)$
3) $y+9=-\frac{3}{2}(x+6)$
4) $y+9=\frac{2}{3}(x+6)$

15 Write an equation of a line that is perpendicular to the line $y=\frac{2}{3} x+5$ and that passes through the point (0,4).
16 Write an equation of the line that is perpendicular to the line whose equation is $2 y=3 x+12$ and that passes through the origin.

17 Find an equation of the line passing through the point $(6,5)$ and perpendicular to the line whose equation is $2 y+3 x=6$.

18 Determine and state an equation of the line perpendicular to the line $5 x-4 y=10$ and passing through the point $(5,12)$.

19 Shanaya graphed the line represented by the equation $y=x-6$. Write an equation for a line that is parallel to the given line. Write an equation for a line that is perpendicular to the given line. Write an equation for a line that is identical to the given line but has different coefficients.

G.GPE.B.5: Parallel and Perpendicular Lines 6

Answer Section

1 ANS: 2
The slope of $y=\frac{1}{2} x+5$ is $\frac{1}{2}$. The slope of a perpendicular line is $-2 . y=m x+b$

$$
\begin{aligned}
& 5=(-2)(-2)+b \\
& b=1
\end{aligned}
$$

REF: 060907ge
2 ANS: $3 \quad$ REF: 011217ge
3 ANS: 4

$$
\begin{aligned}
m_{\perp}=-\frac{1}{3} \cdot y & =m x+b \\
6 & =-\frac{1}{3}(-9)+b \\
6 & =3+b \\
3 & =b
\end{aligned}
$$

REF: 061215ge
4 ANS: 4
The slope of $y=-3 x+2$ is -3 . The perpendicular slope is $\frac{1}{3} .-1=\frac{1}{3}(3)+b$

$$
\begin{aligned}
-1 & =1+b \\
b & =-2
\end{aligned}
$$

REF: 011018ge
5 ANS: 4
$m=\frac{2}{3} \quad .2=-\frac{3}{2}(4)+b$
$m_{\perp}=-\frac{3}{2} \quad \begin{aligned} & 2=-6+b \\ & 8=b\end{aligned}$
REF: 011319ge
6 ANS: 2
$m=\frac{1}{3} \quad 12=-3(-9)+b$
$m_{\perp}=-3 \begin{aligned} 12 & =27+b \\ -15 & =b\end{aligned}, r(t)$
REF: 081404ge

7 ANS: 4

$$
\begin{aligned}
m=-\frac{1}{2} & -4 & =2(6)+b \\
m_{\perp}=2 & -4 & =12+b \\
& -16 & =b
\end{aligned}
$$

REF: 011602geo
8 ANS: 3
The slope of $2 y=x+2$ is $\frac{1}{2}$, which is the opposite reciprocal of $-2 . \quad 3=-2(4)+b$

$$
11=b
$$

REF: 081228ge
9 ANS: 1
$m=\frac{6}{3}=2 \quad m_{\perp}=-\frac{1}{2} 4=-\frac{1}{2}(2)+b$

$$
\begin{aligned}
& 4=-1+b \\
& 5=b
\end{aligned}
$$

REF: 061507ge
10 ANS: 2
$m=\frac{3}{2} \quad . \quad 1=-\frac{2}{3}(-6)+b$
$m_{\perp}=-\frac{2}{3} \quad \begin{aligned} 1 & =4+b \\ -3 & =b\end{aligned}$

REF: 061719geo
11 ANS: 2
$m=\frac{3}{2}$
$m_{\perp}=-\frac{2}{3}$
REF: 061812geo
12 ANS: 3
$m=\frac{3}{4} \quad m_{\perp}=-\frac{4}{3}$
REF: 062406geo

13 ANS: 2
$m=\frac{-4}{-5}=\frac{4}{5}$
$m_{\perp}=-\frac{5}{4}$
REF: 082308geo
14 ANS: 1
$m=\frac{-4}{-6}=\frac{2}{3}$
$m_{\perp}=-\frac{3}{2}$
REF: 011820geo
15 ANS:
$y=-\frac{3}{2} x+4$. The slope of a line perpendicular to the given line is $-\frac{3}{2}$. The given point is the y-intercept.
An equation of the perpendicular line is $y=-\frac{3}{2} x+4$.
REF: 010834a
16
$m=\frac{3}{2} ; m_{\perp}=-\frac{2}{3} \quad y=-\frac{2}{3} x$
REF: 081533ge
17

$$
\begin{aligned}
& y=\frac{2}{3} x+1.2 y+3 x=6 \quad . y=m x+b \\
& 2 y=-3 x+6 \quad 5=\frac{2}{3}(6)+b \\
& y=-\frac{3}{2} x+3 \quad 5=4+b \\
& m=-\frac{3}{2} \quad 1=b \\
& m_{\perp}=\frac{2}{3} \quad y=\frac{2}{3} x+1
\end{aligned}
$$

REF: 061036ge
18
$m=\frac{5}{4} ; m_{\perp}=-\frac{4}{5} \quad y-12=-\frac{4}{5}(x-5)$
REF: 012031geo

19 ANS:
$y=x-5$. The given line has a slope of 1. A parallel line would also have a slope of 1 , but a different
$y=-x-6$
$2 y=2 x-12$
y-intercept. A perpendicular line would have a slope of -1 , the opposite and reciprocal of 1 . Multiple the equation of the given line by any number (other than 1) to find identical lines. There is an infinite number of answers to each of the three questions.

REF: 080130a

