Regents Exam Questions G.GPE.A.1: Equations of Circles 5 www.jmap.org

Name: \qquad

G.GPE.A.1: Equations of Circles 5

1 Which point is on the circle whose equation is $x^{2}+y^{2}=289$?

1) $(-12,12)$
2) $(7,-10)$
3) $(-1,-16)$
4) $(8,-15)$

2 Which equation represents a circle whose center is the origin and that passes through the point $(-4,0)$?

1) $x^{2}+y^{2}=8$
2) $x^{2}+y^{2}=16$
3) $(x+4)^{2}+y^{2}=8$
4) $(x+4)^{2}+y^{2}=16$

3 A circle whose center has coordinates $(-3,4)$ passes through the origin. What is the equation of the circle?

1) $(x+3)^{2}+(y-4)^{2}=5$
2) $(x+3)^{2}+(y-4)^{2}=25$
3) $(x-3)^{2}+(y+4)^{2}=5$
4) $(x-3)^{2}+(y+4)^{2}=25$

4 What is the equation of the circle with its center at $(-1,2)$ and that passes through the point $(1,2)$?

1) $(x+1)^{2}+(y-2)^{2}=4$
2) $(x-1)^{2}+(y+2)^{2}=4$
3) $(x+1)^{2}+(y-2)^{2}=2$
4) $(x-1)^{2}+(y+2)^{2}=2$

5 What is the equation of the circle passing through the point $(6,5)$ and centered at $(3,-4)$?

1) $(x-6)^{2}+(y-5)^{2}=82$
2) $(x-6)^{2}+(y-5)^{2}=90$
3) $(x-3)^{2}+(y+4)^{2}=82$
4) $(x-3)^{2}+(y+4)^{2}=90$

6 Which equation represents a circle with its center at $(2,-3)$ and that passes through the point $(6,2)$?

1) $(x-2)^{2}+(y+3)^{2}=\sqrt{41}$
2) $(x+2)^{2}+(y-3)^{2}=\sqrt{41}$
3) $(x-2)^{2}+(y+3)^{2}=41$
4) $(x+2)^{2}+(y-3)^{2}=41$

7 What is the equation of a circle with its center at $(0,-2)$ and passing through the point $(3,-5)$?

1) $x^{2}+(y+2)^{2}=9$
2) $(x+2)^{2}+y^{2}=9$
3) $x^{2}+(y+2)^{2}=18$
4) $(x+2)^{2}+y^{2}=18$

8 What is the equation of the circle passing through the point $(-5,-2)$ whose center is at $(-2,3)$?

1) $(x+5)^{2}+(y+2)^{2}=34$
2) $(x+5)^{2}+(y+2)^{2}=50$
3) $(x+2)^{2}+(y-3)^{2}=34$
4) $(x+2)^{2}+(y-3)^{2}=50$

Regents Exam Questions G.GPE.A.1: Equations of Circles 5 www.jmap.org

9 Which equation represents the circle whose center is $(-5,3)$ and that passes through the point $(-1,3)$?

1) $(x+1)^{2}+(y-3)^{2}=16$
2) $(x-1)^{2}+(y+3)^{2}=16$
3) $(x+5)^{2}+(y-3)^{2}=16$
4) $(x-5)^{2}+(y+3)^{2}=16$

10 What is an equation of a circle whose center is at $(2,-4)$ and is tangent to the line $x=-2$?

1) $(x-2)^{2}+(y+4)^{2}=4$
2) $(x-2)^{2}+(y+4)^{2}=16$
3) $(x+2)^{2}+(y-4)^{2}=4$
4) $(x+2)^{2}+(y-4)^{2}=16$

11 The coordinates of the endpoints of the diameter of a circle are $(2,0)$ and $(2,-8)$. What is the equation of the circle?

1) $(x-2)^{2}+(y+4)^{2}=16$
2) $(x+2)^{2}+(y-4)^{2}=16$
3) $(x-2)^{2}+(y+4)^{2}=8$
4) $(x+2)^{2}+(y-4)^{2}=8$

12 The diameter of a circle has endpoints at $(-2,3)$ and $(6,3)$. What is an equation of the circle?

1) $(x-2)^{2}+(y-3)^{2}=16$
2) $(x-2)^{2}+(y-3)^{2}=4$
3) $(x+2)^{2}+(y+3)^{2}=16$
4) $(x+2)^{2}+(y+3)^{2}=4$

Name: \qquad

13 Write an equation of the circle whose diameter $\overline{A B}$ has endpoints $A(-4,2)$ and $B(4,-4)$. [The use of the grid below is optional.]

14 The graph below shows $\overline{A B}$, which is a chord of circle O. The coordinates of the endpoints of $\overline{A B}$ are $A(3,3)$ and $B(3,-7)$. The distance from the midpoint of $\overline{A B}$ to the center of circle O is 2 units.

What could be a correct equation for circle O ?

1) $(x-1)^{2}+(y+2)^{2}=29$
2) $(x+5)^{2}+(y-2)^{2}=29$
3) $(x-1)^{2}+(y-2)^{2}=25$
4) $(x-5)^{2}+(y+2)^{2}=25$

G.GPE.A.1: Equations of Circles 5

Answer Section

1 ANS: 4

$$
\begin{aligned}
x^{2}+y^{2} & =289 \\
8^{2}+(-15)^{2} & =289 \\
64+225 & =289
\end{aligned}
$$

REF: 010625a
2 ANS: 2 REF: 061524ge
3 ANS: 2 REF: 011511ge
4 ANS: $1 \quad$ REF: 011423ge
5 ANS: 4
$r=\sqrt{(6-3)^{2}+(5-(-4))^{2}}=\sqrt{9+81}=\sqrt{90}$
REF: 061415a2
6 ANS: 3
$r=\sqrt{(6-2)^{2}+(2--3)^{2}}=\sqrt{16+25}=\sqrt{41}$
REF: 081516a2
7 ANS: 3
$r=\sqrt{(3-0)^{2}+(-5-(-2))^{2}}=\sqrt{9+9}=\sqrt{18}$
REF: 011624a2
8 ANS: 3
$r=\sqrt{(-5--2)^{2}+(-2-3)^{2}}=\sqrt{9+25}=\sqrt{34}$
REF: 061620a2
9 ANS: 3 REF: 061306ge
10 ANS: 2
The line $x=-2$ will be tangent to the circle at $(-2,-4)$. A segment connecting this point and $(2,-4)$ is a radius of the circle with length 4.

REF: 012020geo
11 ANS: 1

$$
\begin{aligned}
\left(\frac{2+2}{2}, \frac{0+(-8)}{2}\right)=(2,-4) \sqrt{(2-2)^{2}+(-8-0)^{2}} & =8=d \\
4 & =r \\
16 & =r^{2}
\end{aligned}
$$

REF: 061428ge

12 ANS: 1
$M_{x}=\frac{-2+6}{2}=2 . M_{y}=\frac{3+3}{2}=3$. The center is (2,3). $d=\sqrt{(-2-6)^{2}+(3-3)^{2}}=\sqrt{64+0}=8$. If the diameter is 8 , the radius is 4 and $r^{2}=16$.

REF: fall0820ge
13 ANS:
Midpoint: $\left(\frac{-4+4}{2}, \frac{2+(-4)}{2}\right)=(0,-1)$. Distance: $d=\sqrt{(-4-4)^{2}+(2-(-4))^{2}}=\sqrt{100}=10$

$$
r=5
$$

$$
r^{2}=25
$$

$x^{2}+(y+1)^{2}=25$
REF: 061037ge
14 ANS: 1

Since the midpoint of $\overline{A B}$ is $(3,-2)$, the center must be either $(5,-2)$ or $(1,-2)$.
$r=\sqrt{2^{2}+5^{2}}=\sqrt{29}$
REF: 061623geo

