Regents Exam Questions F.IF.A.2: Functional Notation 1 www.jmap.org

Name: $\qquad$

## F.IF.A.2: Functional Notation 1

1 The graph of $y=f(x)$ is shown below.


Which point could be used to find $f(2)$ ?

1) $A$
2) $B$
3) $C$
4) $D$

2 The graph of $f(x)$ is shown below.


What is the value of $f(-3)$ ?

1) 6
2) 2
3) -2
4) -4

3 If $f(x)=4 x+5$, what is the value of $f(-3)$ ?

1) -2
2) -7
3) 17
4) 4

4 If $f(x)=\frac{3 x+4}{2}$, then $f(8)$ is

1) 21
2) 16
3) 14
4) 4

Regents Exam Questions F.IF.A.2: Functional Notation 1 www.jmap.org

5 Given $f(x)=-3 x^{2}+10$, what is the value of $f(-2)$ ?

1) -26
2) -2
3) 22
4) 46

Name: $\qquad$

10 If $k(x)=2 x^{2}-3 \sqrt{x}$, then $k(9)$ is

1) 315
2) 307
3) 159
4) 153

11 If $f(x)=2\left(3^{x}\right)+1$, what is the value of $f(2)$ ?

1) 13
2) 19
3) 37
4) 54

12 If $f(x)=\frac{\sqrt{2 x+3}}{6 x-5}$, then $f\left(\frac{1}{2}\right)=$

1) 1
2) -2
3) -1
4) $-\frac{13}{3}$

13 If $f(x)=x^{2}+2 x+1$ and $g(x)=3 x+5$, then what is the value of $f(1)-g(3)$ ?

1) 10
2) 8
3) -10
4) -8

14 Given $f(x)=3 x-5$, which statement is true?

1) $f(0)=0$
2) $f(3)=4$
3) $f(4)=3$
4) $f(5)=0$

Regents Exam Questions F.IF.A.2: Functional Notation 1 www.jmap.org

15 If $f(n)=(n-1)^{2}+3 n$, which statement is true?

1) $f(3)=-2$
2) $f(-2)=3$
3) $f(-2)=-15$
4) $f(-15)=-2$

16 If $f(x)=x^{2}+3 x$, then which statement is true?

1) $f(1)=f(-1)$
2) $f(2)=f(-2)$
3) $f(1)=f(2)$
4) $f(-1)=f(-2)$

17 Lynn, Jude, and Anne were given the function $f(x)=-2 x^{2}+32$, and they were asked to find $f(3)$. Lynn's answer was 14, Jude's answer was 4, and Anne's answer was $\pm 4$. Who is correct?

1) Lynn, only
2) Jude, only
3) Anne, only
4) Both Lynn and Jude

18 The value in dollars, $v(x)$, of a certain car after $x$ years is represented by the equation $v(x)=25,000(0.86)^{x}$. To the nearest dollar, how much more is the car worth after 2 years than after 3 years?

1) 2589
2) 6510
3) 15,901
4) 18,490

Name: $\qquad$

20 Given $g(x)=x^{3}+2 x^{2}-x$, evaluate $g(-3)$.

21 The piecewise function $f(x)$ is given below.

$$
f(x)= \begin{cases}2 x-3, & x>3 \\ -x^{2}+15, & x \leq 3\end{cases}
$$

State the value of $f(3)$. Justify your answer.

22 The equation to determine the weekly earnings of an employee at The Hamburger Shack is given by $w(x)$, where $x$ is the number of hours worked.

$$
w(x)= \begin{cases}10 x, & 0 \leq x \leq 40 \\ 15(x-40)+400, & x>40\end{cases}
$$

Determine the difference in salary, in dollars, for an employee who works 52 hours versus one who works 38 hours. Determine the number of hours an employee must work in order to earn $\$ 445$.
Explain how you arrived at this answer.

19 If $g(x)=-4 x^{2}-3 x+2$, determine $g(-2)$.

## F.IF.A.2: Functional Notation 1

## Answer Section

1 ANS: 1 REF: 061420ai
2 ANS: 1 REF: 081805ai
3 ANS: 2
$f(-3)=-12+5=-7$
REF: 061902ai
4 ANS: 3
$f(8)=\frac{3(8)+4}{2}=\frac{28}{2}=14$

REF: 082201ai
5 ANS: 2
$f(-2)=-3(-2)^{2}+10=-12+10=-2$
REF: 012304ai
6 ANS: 1
$g(-3)=-2(-3)^{2}+3(-3)=-18-9=-27$
REF: 011902ai
7 ANS: 2
$g(-4)=-(-4)^{2}-(-4)+5=-7$
REF: 062311ai
8 ANS: 2
$K(-3)=2(-3)^{2}-5(-3)+3=18+15+3=36$
REF: 062103ai
9 ANS: 3
$f(8)=\frac{1}{2}(8)^{2}-\left(\frac{1}{4}(8)+3\right)=32-5=27$
REF: 081704ai
10 ANS: 4
$k(9)=2(9)^{2}-3 \sqrt{9}=162-9=153$
REF: 061802ai
11 ANS: 2
$f(2)=2\left(3^{2}\right)+1=19$
REF: 012001ai

12 ANS: 3
$\frac{\sqrt{2\left(\frac{1}{2}\right)+3}}{6\left(\frac{1}{2}\right)-5}=\frac{\sqrt{4}}{-2}=\frac{2}{-2}=-1$
REF: 081512ai
13 ANS: 3

$$
\begin{aligned}
f(1) & =1^{2}+2(1)+1=4 \\
g(3) & =3(3)+5=14 \\
f(1)-g(3) & =-10
\end{aligned}
$$

REF: 012410ai
14 ANS: 2
$f(3)=3(3)-5=4$
REF: 062202ai
15 ANS: 2
$f(-2)=(-2-1)^{2}+3(-2)=9-6=3$
REF: 081605ai
16 ANS: 4
$f(-1)=f(-2)=-2$
REF: 082318ai
17 ANS: 1
$f(3)=-2(3)^{2}+32=-18+32=14$
REF: 061705ai
18 ANS: 1
$25,000(0.86)^{2}-25,000(0.86)^{3}=18490-15901.40=2588.60$
REF: 011508ai
19 ANS:
$g(-2)=-4(-2)^{2}-3(-2)+2=-16+6+2=-8$
REF: 081925ai
20 ANS:
$g(-3)=(-3)^{3}+2(-3)^{2}-(-3)=-27+18+3=-6$
REF: 062426ai

21 ANS:
$f(3)=-(3)^{2}+15=6$
REF: 012430ai
22 ANS:

$$
w(52)-w(38)
$$

$15(52-40)+400-10(38)$
$180+400-380$
200

$$
\begin{aligned}
15(x-40)+400 & =445 \text { Since } w(x)>400, x>40 . \text { I substituted } 445 \text { for } w(x) \text { and solved } \\
15(x-40) & =45 \\
x-40 & =3 \\
x & =43
\end{aligned}
$$

for $x$.
REF: 061534ai

