Regents Exam Questions A.CED.A.4: Transforming Formulas 1 www.jmap.org

Name: \qquad

A.CED.A.4: Transforming Formulas 1

1 Boyle's Law involves the pressure and volume of gas in a container. It can be represented by the formula $P_{1} V_{1}=P_{2} V_{2}$. When the formula is solved for P_{2}, the result is

1) $P_{1} V_{1} V_{2}$
2) $\frac{V_{2}}{P_{1} V_{1}}$
3) $\frac{P_{1} V_{1}}{V_{2}}$
4) $\frac{P_{1} V_{2}}{V_{1}}$

2 Michael borrows money from his uncle, who is charging him simple interest using the formula $I=P r t$. To figure out what the interest rate, r, is, Michael rearranges the formula to find r. His new formula is r equals

1) $\frac{I-P}{t}$
2) $\frac{P-I}{t}$
3) $\frac{I}{P t}$
4) $\frac{P t}{I}$

3 The formula $A x+B y=C$ represents the equation of a line in standard form. Which expression represents y in terms of A, B, C, and x ?

1) $\frac{C-A x}{B}$
2) $\frac{C-A}{B x}$
3) $\frac{C-A}{x+B}$
4) $\frac{C-B}{A x}$

4 An equation used to find the velocity of an object is given as $v^{2}=u^{2}+2 a s$, where u is the initial velocity, v is the final velocity, a is the acceleration of the object, and s is the distance traveled. When this equation is solved for a, the result is

1) $a=\frac{v^{2} u^{2}}{2 s}$
2) $a=\frac{v^{2}-u^{2}}{2 s}$
3) $a=v^{2}-u^{2}-2 s$
4) $a=2 s\left(v^{2}-u^{2}\right)$

5 The formula for the area of a trapezoid is $A=\frac{1}{2}\left(b_{1}+b_{2}\right) h$. The height, h, of the trapezoid may be expressed as

1) $2 A-b_{1}-b_{2}$
2) $\frac{2 A-b_{1}}{b_{2}}$
3) $\frac{1}{2} A-b_{1}-b_{2}$
4) $\frac{2 A}{b_{1}+b_{2}}$

6 The volume of a trapezoidal prism can be found using the formula $V=\frac{1}{2} a(b+c) h$. Which equation is correctly solved for b ?

1) $b=\frac{V}{2 a h}+c$
2) $b=\frac{V}{2 a h}-c$
3) $b=\frac{2 V}{a h}+c$
4) $b=\frac{2 V}{a h}-c$
\qquad

7 The amount of energy, Q, in joules, needed to raise the temperature of m grams of a substance is given by the formula $Q=m C\left(T_{f}-T_{i}\right)$, where C is the specific heat capacity of the substance. If its initial temperature is T_{i}, an equation to find its final temperature, T_{f}, is

1) $T_{f}=\frac{Q}{m C}-T_{i}$
2) $T_{f}=\frac{Q}{m C}+T_{i}$
3) $T_{f}=\frac{T_{i}+Q}{m C}$
4) $T_{f}=\frac{Q-m C}{T_{i}}$

8 The equation for the volume of a cylinder is $V=\pi r^{2} h$. The positive value of r, in terms of h and V, is

1) $r=\sqrt{\frac{V}{\pi h}}$
2) $r=\sqrt{V \pi h}$
3) $r=2 V \pi h$
4) $r=\frac{V}{2 \pi}$

9 The formula for electrical power, P, is $P=I^{2} R$, where I is current and R is resistance. The formula for I in terms of P and R is

1) $I=\left(\frac{P}{R}\right)^{2}$
2) $I=\sqrt{\frac{P}{R}}$
3) $I=(P-R)^{2}$
4) $I=\sqrt{P-R}$

10 The formula for the volume of a cone is $V=\frac{1}{3} \pi r^{2} h$. The radius, r, of the cone may be expressed as

1) $\sqrt{\frac{3 V}{\pi h}}$
2) $\sqrt{\frac{V}{3 \pi h}}$
3) $3 \sqrt{\frac{V}{\pi h}}$
4) $\frac{1}{3} \sqrt{\frac{V}{\pi h}}$

11 The distance a free falling object has traveled can be modeled by the equation $d=\frac{1}{2} a t^{2}$, where a is acceleration due to gravity and t is the amount of time the object has fallen. What is t in terms of a and d ?

1) $t=\sqrt{\frac{d a}{2}}$
2) $t=\sqrt{\frac{2 d}{a}}$
3) $t=\left(\frac{d a}{d}\right)^{2}$
4) $t=\left(\frac{2 d}{a}\right)^{2}$

Regents Exam Questions A.CED.A.4: Transforming Formulas 1 www.jmap.org

12 The formula for blood flow rate is given by $F=\frac{p_{1}-p_{2}}{r}$, where F is the flow rate, p_{1} the initial pressure, p_{2} the final pressure, and r the resistance created by blood vessel size. Which formula can not be derived from the given formula?

1) $p_{1}=F r+p_{2}$
2) $p_{2}=p_{1}-F r$
3) $r=F\left(p_{2}-p_{1}\right)$
4) $r=\frac{p_{1}-p_{2}}{F}$

13 Students were asked to write a formula for the length of a rectangle by using the formula for its perimeter, $p=2 \ell+2 w$. Three of their responses are shown below.
I. $\ell=\frac{1}{2} p-w$
II. $\ell=\frac{1}{2}(p-2 w)$
III. $\ell=\frac{p-2 w}{2}$

Which responses are correct?

1) I and II, only
2) II and III, only
3) I and III, only
4) I, II, and III

14 When the equation $\frac{x-1}{2}-\frac{a}{4}=\frac{3 a}{4}$ is solved for x in terms of a, the solution is

1) $\frac{3 a}{2}+1$
2) $a+1$
3) $\frac{4 a+1}{2}$
4) $2 a+1$

15 When solved for x in terms of a, the solution to the equation $3 x-7=a x+5$ is

1) $\frac{12}{3 a}$
2) $\frac{12}{3-a}$
3) $\frac{3 a}{12}$
4) $\frac{3-a}{12}$

16 The formula for the sum of the degree measures of the interior angles of a polygon is $S=180(n-2)$. Solve for n, the number of sides of the polygon, in terms of S.

17 The formula $a=\frac{v_{f}-v_{i}}{t}$ is used to calculate acceleration as the change in velocity over the period of time. Solve the formula for the final velocity, v_{f}, in terms of initial velocity, v_{i}, acceleration, a, and time, t.

18 The formula $d=t\left(\frac{v_{i}+v_{f}}{2}\right)$ is used to calculate the distance, d, covered by an object in a given period of time, t. Solve the formula for v_{f}, the final velocity, in terms of d, t, and v_{i}, the initial velocity.

19 The temperature inside a cooling unit is measured in degrees Celsius, C. Josh wants to find out how cold it is in degrees Fahrenheit, F. Solve the formula $C=\frac{5}{9}(F-32)$ for F so that Josh can convert Celsius to Fahrenheit.

Regents Exam Questions A.CED.A.4: Transforming Formulas 1 www.jmap.org

20 The formula for converting degrees Fahrenheit (F) to degrees Kelvin (K) is:

$$
K=\frac{5}{9}(F+459.67)
$$

Solve for F, in terms of K.

21 Solve the equation below for x in terms of a.

$$
4(a x+3)-3 a x=25+3 a
$$

22 A formula for determining the finite sum, S, of an arithmetic sequence of numbers is $S=\frac{n}{2}(a+b)$, where n is the number of terms, a is the first term, and b is the last term. Express b in terms of a, S, and n.

23 The formula for the area of a trapezoid is $A=\frac{1}{2} h\left(b_{1}+b_{2}\right)$. Express b_{1} in terms of A, h, and b_{2}. The area of a trapezoid is 60 square feet, its height is 6 ft , and one base is 12 ft . Find the number of feet in the other base.

24 The formula $F_{g}=\frac{G M_{1} M_{2}}{r^{2}}$ calculates the gravitational force between two objects where G is the gravitational constant, M_{1} is the mass of one object, M_{2} is the mass of the other object, and r is the distance between them. Solve for the positive value of r in terms of F_{g}, G, M_{1}, and M_{2}.

25 The volume of a large can of tuna fish can be calculated using the formula $V=\pi r^{2} h$. Write an equation to find the radius, r, in terms of V and h. Determine the diameter, to the nearest inch, of a large can of tuna fish that has a volume of 66 cubic inches and a height of 3.3 inches.

26 The formula for the volume of a cone is $V=\frac{1}{3} \pi r^{2} h$. Solve the equation for h in terms of V, r, and π.

27 Using the formula for the volume of a cone, express r in terms of V, h, and π.

A.CED.A.4: Transforming Formulas 1

Answer Section

1 ANS: 3 REF: 011704ai
2 ANS: 3 REF: 011606ai
3 ANS: 1
$A x+B y=C$
$B y=C-A x$

$$
y=\frac{C-A x}{B}
$$

REF: 062211ai
4 ANS: 2
$v^{2}-u^{2}=2 a s$
$\frac{v^{2}-u^{2}}{2 s}=\frac{2 a s}{2 s}$
$\frac{v^{2}-u^{2}}{2 s}=a$
REF: 012408ai
5 ANS: 4
$2 A=\left(b_{1}+b_{2}\right) h$
$\frac{2 A}{b_{1}+b_{2}}=h$
REF: 062315ai
6 ANS: 4

$$
\begin{aligned}
V & =\frac{1}{2} a(b+c) h \\
2 V & =a(b+c) h \\
\frac{2 V}{a h} & =b+c \\
\frac{2 V}{a h}-c & =b
\end{aligned}
$$

REF: 082224ai

7 ANS: 2

$$
\frac{Q}{m C}=T_{f}-T_{i}
$$

$\frac{Q}{m C}+T_{i}=T_{f}$

REF: 012318ai
8 ANS: 1
9 ANS: 2
$P=I^{2} R$
$I^{2}=\frac{P}{R}$
$I=\sqrt{\frac{P}{R}}$
REF: 011920ai
10 ANS: 1

$$
\begin{aligned}
V & =\frac{1}{3} \pi r^{2} h \\
3 V & =\pi r^{2} h \\
\frac{3 V}{\pi h} & =r^{2}
\end{aligned}
$$

$$
\sqrt{\frac{3 V}{\pi h}}=r
$$

REF: 061423ai
11 ANS: 2

$$
d=\frac{1}{2} a t^{2}
$$

$$
2 d=a t^{2}
$$

$$
\frac{2 d}{a}=t^{2}
$$

$\sqrt{\frac{2 d}{a}}=t$
REF: 061519ai
12 ANS: 3
13 ANS: 4
REF: 061723ai
REF: 061823ai

14 ANS: 4

$$
\begin{aligned}
\frac{x-1}{2} & =a \\
x-1 & =2 a \\
x & =2 a+1
\end{aligned}
$$

REF: 062223ai
15 ANS: 2
$3 x-a x=12$
$x(3-a)=12$

$$
x=\frac{12}{3-a}
$$

REF: 062422ai
16 ANS:

$$
\frac{S}{180}=n-2
$$

$\frac{S}{180}+2=n$
REF: 061631ai
17 ANS:
$a t=v_{f}-v_{i}$
$a t+v_{i}=v_{f}$
REF: 081928ai
18 ANS:
$2 d=t\left(v_{i}+v_{f}\right)$
$\frac{2 d}{t}=v_{i}+v_{f}$
$\frac{2 d}{t}-v_{i}=v_{f}$
REF: 082328ai
19 ANS:
$9 C=5 F-160$
$F=\frac{9 C+160}{5}$
REF: 062131ai

20 ANS:
$9 K=5 F+2298.35$
$F=\frac{9 K-2298.35}{5}$
REF: 081829ai
21 ANS:

$$
\begin{aligned}
4 a x+12-3 a x & =25+3 a \\
a x & =13+3 a \\
x & =\frac{13+3 a}{a}
\end{aligned}
$$

REF: 081632ai
22 ANS:
$2 S=n(a+b)$
$\frac{2 S}{n}=a+b$
$\frac{2 S}{n}-a=b$
REF: 012032ai
23 ANS:
$A=\frac{1}{2} h\left(b_{1}+b_{2}\right) b_{1}=\frac{2(60)}{6}-12=20-12=8$
$\frac{2 A}{h}=b_{1}+b_{2}$
$\frac{2 A}{h}-b_{2}=b_{1}$
REF: 081434ai
24 ANS:
$F_{g}=\frac{G M_{1} M_{2}}{r^{2}}$
$r^{2}=\frac{G M_{1} M_{2}}{F_{g}}$
$r=\sqrt{\frac{G M_{1} M_{2}}{F_{g}}}$
REF: 011830ai

25 ANS:
$\frac{V}{\pi h}=\frac{\pi r^{2} h}{\pi h} \quad d=2 \sqrt{\frac{66}{3.3 \pi}} \approx 5$
$\frac{V}{\pi h}=r^{2}$
$\sqrt{\frac{V}{\pi h}}=r$
REF: 081535ai
26 ANS:

$$
\begin{aligned}
V & =\frac{1}{3} \pi r^{2} h \\
3 V & =\pi r^{2} h \\
\frac{3 V}{\pi r^{2}} & =h
\end{aligned}
$$

REF: 061930ai
27 ANS:

$$
\begin{aligned}
V & =\frac{1}{3} \pi r^{2} h \\
3 V & =\pi r^{2} h \\
\frac{3 V}{\pi h} & =r^{2} \\
\sqrt{\frac{3 V}{\pi h}} & =r
\end{aligned}
$$

REF: 081727ai

