QUADRATICS: Solving Quadratics - 80\%

www.jmap.org
The question will ask you to solve a quadratic equation with imaginary solutions. Nspire will calculate a precise answer in $a+b i$ form if b is rational.

The roots of the equation $x^{2}-4 x=-13$ are
(1) $2 \pm 3 i$
(3) $2 \pm \sqrt{17}$
(2) $2 \pm 6 i$
(4) $2 \pm i \sqrt{13}$
062312aii

	$41.1>$ *Doc RAD $] \times$
Add a Calculator page. Enter menu, 3, 3, 1. Change Roots to Complex.	Find Roots of a Polynomial Degree: \square Roots: \square Complex OK Cancel
The equation written in standard form is $x^{2}-4 x+13=0$. Enter $a_{2}=1, a_{1}=-4, a_{0}=13$. (1) is the correct response.	cPolyRoots $\left(x^{2}-4 \cdot x+13, x\right)$ $\{2-3 \cdot \boldsymbol{i}, 2+3 \cdot \boldsymbol{i}\}$

If this were an open ended question, algebraic work similar to this is required for full credit:

$$
\begin{aligned}
x^{2}-4 x+4 & =-13+4 \\
(x-2)^{2} & =-9 \\
x-2 & = \pm 3 i \\
x & =2 \pm 3 i
\end{aligned}
$$

The quadratic formula may also be used.
Nspire will not display a precise answer in $a+b i$ form if b is irrational.

A solution of the equation $2 x^{2}+3 x+2=0$ is

(1) $-\frac{3}{4}+\frac{1}{4} i \sqrt{7}$
(3) $-\frac{3}{4}+\frac{1}{4} \sqrt{7}$
(2) $-\frac{3}{4}+\frac{7}{4} i$
(4) $\frac{1}{2}$

Add a Calculator page.
Enter menu, 3, 3, 1. Change Roots to Complex.

$$
\text { Enter } a_{2}=2, a_{1}=3, a_{0}=2
$$

(3) and (4) are eliminated as they are not imaginary solutions.

The calculated value of b equals the value of b in (1).
(1) is the correct response.

You may be able to find b by squaring the displayed value of b, then taking the square root of the result.

> Add a Calculator page.

Enter menu, 3, 3, 1. Change Roots to Complex.

$$
\text { Enter } a_{2}=2, a_{1}=3, a_{0}=2
$$

Arrow up and hit enter to display a more precise value of b.

Delete everything except one occurrence of $b \boldsymbol{i}$ and the braces.
Square that value.
Enter menu, 2, 2 to convert to a fraction.

$$
\sqrt{\frac{-7}{16}}=i \frac{\sqrt{7}}{4}
$$

If this were an open ended question, algebraic work similar to this is required for full credit:

$$
x=\frac{-3 \pm \sqrt{3^{2}-4(2)(2)}}{2(2)}=\frac{-3 \pm \sqrt{-7}}{4}=-\frac{3}{4} \pm \frac{i \sqrt{7}}{4}
$$

For more questions, go to https://www.jmap.org/htmlstandard/A.REI.B.4.htm.

