GRAPHS AND STATISTICS: Regression - 45\%
 www.jmap.org

The question may require you to write an exponential regression equation to model data. The question may also require you to use the equation to make a prediction.

The table below gives air pressures in kPa at selected altitudes above sea level measured in kilometers.

\mathbf{x}	Altitude (km)	0	1	2	3	4	5
\mathbf{y}	Air Pressure (kPa)	101	90	79	70	62	54

Write an exponential regression equation that models these data rounding all values to the nearest thousandth.

Use this equation to algebraically determine the altitude, to the nearest hundredth of a kilometer, when the air pressure is 29 kPa .

Add a Calculator page.	41.1 1.2 ${ }^{4}$	rad $] \times$
Remember the Regression Equation is saved to f1. You must redefine f1 with correct rounding.	Define $f 1(x)=101.523 \cdot(0.883)^{x}$	Done
Enter menu, 1, 2, f1 to bring up f1. Correct the rounding.	nSolve $(f 1(x)=29, x)$	10.070
Enter $f 1(x)=29, \operatorname{ctrl}$, menu, 1, 2		
10.07 is the correct response.		
Algebraic work similar to this is required for full credit:$29=101.523(.883)^{x}$		
$\frac{29}{1015 \gamma^{2}}=(.883)^{x}$		
$\log \frac{29}{101.523}=x \log (.883)$		
$\log \frac{29}{101573}$		
$\frac{101.523}{\log (.883)}=x$		
$x \approx 10.07$		
For more questions, go to $\mathrm{https}: / / \mathrm{www} . j \mathrm{jmap} .0$	g/htmlstandard/S.ID.B.6.htm.	

