Quadratic Inequalities

Getting Started: 

Review of Previous Lesson/HW/Do Now
Statement of Objectives: 

A2.A.4 Solve quadratic inequalities in one and two variables, algebraically and graphically.
Big Idea: 

Quadratics can be solved using three general approaches in the Math B Curriculum:

1. Graphing.  Quadratic inequalities may be solved in a graphing calculator by moving all terms to one side of the inequality and reducing the other side to zero.  The inequality is then entered into the graphing calculator’s 
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 feature.  Once input, the calculator’s 
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 and 
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features may be accessed and manipulated using the (
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) and graph
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features.

NOTE:  The invention of the graphing calculator has made the graphing approach, including inspecting tables of values and using the 
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 feature, a powerful approach, which previously was seldom used.

Quadratic inequalities can also be solved as quadratic equations and the resulting solutions tested in the inequality.  If there are two real solutions, a value of the independent variable in the interval between the quadratic solutions is tested to determine whether it makes the inequality true or false.  If the tested value results in a true inequality, the interval between the solutions is the solution of the inequality.  If the tested value results in a false inequality, the intervals outside the solutions are the solutions to the inequality.    

2. Factoring.  

3. Using the Quadratic Formula 
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4. Completing the Square
Modeling:

Regents Math B Exam Problem:

	When a baseball is hit by a batter, the height of the ball, h(t), at time t, is determined by the equation
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. For which interval of time is the height of the ball greater than or equal to 52 feet?


Four Solution Strategies

Strategy 1:  Graphing:  

	Step 1:  Input 
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 into the 
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	Step 2.  Inspect the table of values by selecting the 
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The answer is 
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	STEP 3.  Adjust the 
[image: image16.wmf]WINDOW

 using information from the table of values.
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	STEP 4.  Verify your solution by looking at the 
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	NOTE:  You can adjust the table of values to find answers to the nearest tenth, nearest one hundredth, etc., by adjusting the 
[image: image20.wmf]TBL

V

 value in the 
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feature.


Strategy 2:  Factoring:  

	STEP 1:  Set the value of 
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 to 52 in the equation 
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These are the bounds of the solution set(s).
	STEP 2.  Select a value between the two solutions and test it in the inequality to determine where the solution set of the inequality lies.  
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	Step 3.  Since the tested value is greater than or equal to 52, the interval between the bounds is the solution set of the inequality.  We can write
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Strategy 3:  Quadratic Formula  

	STEP 1.  Make sure the equation is in standard form 
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, identify the values of a, b, c.
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	STEP 2.  Solve using the quadratic formula. 
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	STEP 3.  Select a value between the two solutions and test it in the inequality to determine where the solution set of the inequality lies.  
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Since the tested value is greater than or equal to 52, the interval between the bounds is the solution set of the inequality.  We can write
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Strategy 4:  Completing the Square  

	STEP 1.  Set the value of 
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 to 52 in the equation 
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STEP 2.  Complete the square.
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STEP 3.  Select a value between the two solutions and test it in the inequality to determine where the solution set of the inequality lies.  


Check for Understanding: 

Guided Practice: 

Selected worksheet.

Independent Practice: 

Students should complete the worksheet on their own.
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