0817geo

1 A two-dimensional cross section is taken of a three-dimensional object. If this cross section is a triangle, what can not be the three-dimensional object?

1) cone
2) cylinder
3) pyramid
4) rectangular prism

2 The image of $\triangle D E F$ is $\triangle D^{\prime} E^{\prime} F$. Under which transformation will he triangles not be congruent?

1) a reflection through the origin
2) a reflection over the line $y=x$
3) a dilation with a scale factor of 1 centered at $(2,3)$
4) a dilation with a scale factor of $\frac{3}{2}$ centered at the origin

3 The vertices of square $R S T V$ have coordinates $R(-1,5), S(-3,1), T(-7,3)$, and $V(-5,7)$. What is the perimeter of RSTV?

1) $\sqrt{20}$
2) $\sqrt{40}$
3) $4 \sqrt{20}$
4) $4 \sqrt{40}$

4 In the diagram below of circle O, chord $\overline{C D}$ is parallel to diameter $\overline{A O B}$ and $\mathrm{m} \overparen{C D}=130$.

What is $\overparen{\mathrm{m}} \overparen{A C}$?

1) 25
2) 50
3) 65
4) 115

5 In the diagram below, $\overline{A D}$ intersects $\overline{B E}$ at C, and $\overline{A B} \| \overline{D E}$.

If $C D=6.6 \mathrm{~cm}, D E=3.4 \mathrm{~cm}, C E=4.2 \mathrm{~cm}$, and $B C=5.25 \mathrm{~cm}$, what is the length of $\overline{A C}$, to the nearest hundredth of a centimeter?

1) 2.70
2) 3.34
3) 5.28
4) 8.25

6 As shown in the graph below, the quadrilateral is a rectangle.

Which transformation would not map the rectangle onto itself?

1) a reflection over the x-axis
2) a reflection over the line $x=4$
3) a rotation of 180° about the origin
4) a rotation of 180° about the point $(4,0)$

7 In the diagram below, triangle $A C D$ has points B and E on sides $\overline{A C}$ and $\overline{A D}$, respectively, such that $\overline{B E} \| \overline{C D}, A B=1, B C=3.5$, and $A D=18$.

What is the length of $\overline{A E}$, to the nearest tenth?

1) 14.0
2) 5.1
3) 3.3
4) 4.0

8 In the diagram below of parallelogram ROCK, $\mathrm{m} \angle C$ is 70° and $\mathrm{m} \angle R O S$ is 65°.

What is $\mathrm{m} \angle K S O$?

1) 45°
2) 110°
3) 115°
4) 135°

9 In the diagram below, $\angle G R S \cong \angle A R T, G R=36$, $S R=45, A R=15$, and $R T=18$.

Which triangle similarity statement is correct?

1) $\triangle G R S \sim \triangle A R T$ by AA.
2) $\triangle G R S \sim \triangle A R T$ by SAS.
3) $\triangle G R S \sim \triangle A R T$ by SSS.
4) $\triangle G R S$ is not similar to $\triangle A R T$.

10 The line represented by the equation $4 y=3 x+7$ is transformed by a dilation centered at the origin. Which linear equation could represent its image?

1) $3 x-4 y=9$
2) $3 x+4 y=9$
3) $4 x-3 y=9$
4) $4 x+3 y=9$

11 Given $\triangle A B C$ with $\mathrm{m} \angle B=62^{\circ}$ and side $\overline{A C}$ extended to D, as shown below.

Which value of x makes $\overline{A B} \cong \overline{C B}$?

1) 59°
2) 62°
3) 118°
4) 121°

12 In the diagram shown below, $\overline{P A}$ is tangent to circle T at A, and secant $\overline{P B C}$ is drawn where point B is on circle T.

If $P B=3$ and $B C=15$, what is the length of $\overline{P A}$?

1) $3 \sqrt{5}$
2) $3 \sqrt{6}$
3) 3
4) 9

13 A rectangle whose length and width are 10 and 6, respectively, is shown below. The rectangle is continuously rotated around a straight line to form an object whose volume is 150π.

Which line could the rectangle be rotated around?

1) a long side
2) a short side
3) the vertical line of symmetry
4) the horizontal line of symmetry

14 If $A B C D$ is a parallelogram, which statement would prove that $A B C D$ is a rhombus?

1) $\angle A B C \cong \angle C D A$
2) $\overline{A C} \cong \overline{B D}$
3) $\overline{A C} \perp \overline{B D}$
4) $\overline{A B} \perp \overline{C D}$

15 To build a handicapped-access ramp, the building code states that for every 1 inch of vertical rise in height, the ramp must extend out 12 inches horizontally, as shown in the diagram below.

What is the angle of inclination, x, of this ramp, to the nearest hundredth of a degree?

1) 4.76
2) 4.78
3) 85.22
4) 85.24

16 In the diagram below of $\triangle A B C, D, E$, and F are the midpoints of $\overline{A B}, \overline{B C}$, and $\overline{C A}$, respectively.

What is the ratio of the area of $\triangle C F E$ to the area of $\triangle C A B$?

1) $1: 1$
2) $1: 2$
3) $1: 3$
4) $1: 4$

17 The coordinates of the endpoints of $\overline{A B}$ are
$A(-8,-2)$ and $B(16,6)$. Point P is on $\overline{A B}$. What are the coordinates of point P, such that $A P: P B$ is 3:5?

1) $(1,1)$
2) $(7,3)$
3) $(9.6,3.6)$
4) $(6.4,2.8)$

18 Kirstie is testing values that would make triangle $K L M$ a right triangle when $\overline{L N}$ is an altitude, and $K M=16$, as shown below.

Which lengths would make triangle $K L M$ a right triangle?

1) $L M=13$ and $K N=6$
2) $L M=12$ and $N M=9$
3) $K L=11$ and $K N=7$
4) $L N=8$ and $N M=10$

19 In right triangle $A B C, \mathrm{~m} \angle A=32^{\circ}, \mathrm{m} \angle B=90^{\circ}$, and $A C=6.2 \mathrm{~cm}$. What is the length of $\overline{B C}$, to the nearest tenth of a centimeter?

1) 3.3
2) 3.9
3) 5.3
4) 11.7

20 The 2010 U.S. Census populations and population densities are shown in the table below.

State	Population Density $\left(\frac{\text { people }}{\mathrm{mi}^{2}}\right)$	Population in $\mathbf{2 0 1 0}$
Florida	350.6	$18,801,310$
Illinois	231.1	$12,830,632$
New York	411.2	$19,378,102$
Pennsylvania	283.9	$12,702,379$

Based on the table above, which list has the states' areas, in square miles, in order from largest to smallest?

1) Illinois, Florida, New York,
Pennsylvania
2) New York, Florida, Illinois, Pennsylvania
3) New York, Florida, Pennsylvania, Illinois
4) Pennsylvania, New York, Florida, Illinois

21 In a right triangle, $\sin (40-x)^{\circ}=\cos (3 x)^{\circ}$. What is the value of x ?

1) 10
2) 15
3) 20
4) 25

22 A regular decagon is rotated n degrees about its center, carrying the decagon onto itself. The value of n could be

1) 10°
2) 150°
3) 225°
4) 252°

23 In a circle with a diameter of 32 , the area of a sector is $\frac{512 \pi}{3}$. The measure of the angle of the sector, in radians, is

1) $\frac{\pi}{3}$
2) $\frac{4 \pi}{3}$
3) $\frac{16 \pi}{3}$
4) $\frac{64 \pi}{3}$

24 What is an equation of the perpendicular bisector of the line segment shown in the diagram below?

1) $y+2 x=0$
2) $y-2 x=0$
3) $2 y+x=0$
4) $2 y-x=0$

25 Sue believes that the two cylinders shown in the diagram below have equal volumes.

Is Sue correct? Explain why.

26 In the diagram of rhombus $P Q R S$ below, the diagonals $\overline{P R}$ and $\overline{Q S}$ intersect at point $T, P R=16$, and $Q S=30$. Determine and state the perimeter of PQRS.

27 Quadrilateral $M A T H$ and its image $M^{\prime \prime} A^{\prime \prime} T^{\prime \prime} H^{\prime \prime}$ are graphed on the set of axes below.

Describe a sequence of transformations that maps quadrilateral $M A T H$ onto quadrilateral $M^{\prime \prime} A^{\prime \prime} T^{\prime \prime} H^{\prime \prime}$.

28 Using a compass and straightedge, construct a regular hexagon inscribed in circle O. [Leave all construction marks.]

29 The coordinates of the endpoints of $\overline{A B}$ are $A(2,3)$ and $B(5,-1)$. Determine the length of $A^{\prime} B^{\prime}$, the image of $\overline{A B}$, after a dilation of $\frac{1}{2}$ centered at the origin. [The use of the set of axes below is optional.]

30 In the diagram below of $\triangle A B C$ and $\triangle X Y Z$, a sequence of rigid motions maps $\angle A$ onto $\angle X$, $\angle C$ onto $\angle Z$, and $\overline{A C}$ onto $\overline{X Z}$.

Determine and state whether $\overline{B C} \cong \overline{Y Z}$. Explain why.

31 Determine and state the coordinates of the center and the length of the radius of a circle whose equation is $x^{2}+y^{2}-6 x=56-8 y$.

32 Triangle $P Q R$ has vertices $P(-3,-1), Q(-1,7)$, and $R(3,3)$, and points A and B are midpoints of $\overline{P Q}$ and $\overline{R Q}$, respectively. Use coordinate geometry to prove that $\overline{A B}$ is parallel to $\overline{P R}$ and is half the length of $\overline{P R}$. [The use of the set of axes below is optional.]

33 In the diagram below of circle O, tangent $\overleftrightarrow{E C}$ is drawn to diameter $\overline{A C}$. Chord $\overline{B C}$ is parallel to secant $\overline{A D E}$, and chord $\overline{A B}$ is drawn.

Prove: $\frac{B C}{C A}=\frac{A B}{E C}$

34 Keira has a square poster that she is framing and placing on her wall. The poster has a diagonal 58 cm long and fits exactly inside the frame. The width of the frame around the picture is 4 cm .

Determine and state the total area of the poster and frame to the nearest tenth of a square centimeter.

35 Isosceles trapezoid $A B C D$ has bases $\overline{D C}$ and $\overline{A B}$ with nonparallel legs $\overline{A D}$ and $\overline{B C}$. Segments $A E$, $B E, C E$, and $D E$ are drawn in trapezoid $A B C D$ such that $\angle C D E \cong \angle D C E, \overline{A E} \perp \overline{D E}$, and $\overline{B E} \perp \overline{C E}$.

Prove $\triangle A D E \cong \triangle B C E$ and prove $\triangle A E B$ is an isosceles triangle.

36 A rectangular in-ground pool is modeled by the prism below. The inside of the pool is 16 feet wide and 35 feet long. The pool has a shallow end and a deep end, with a sloped floor connecting the two ends. Without water, the shallow end is 9 feet long and 4.5 feet deep, and the deep end of the pool is 12.5 feet long.

If the sloped floor has an angle of depression of 16.5 degrees, what is the depth of the pool at the deep end, to the nearest tenth of a foot? Find the volume of the inside of the pool to the nearest cubic foot. A garden hose is used to fill the pool. Water comes out of the hose at a rate of 10.5 gallons per minute. How much time, to the nearest hour, will it take to fill the pool 6 inches from the top? [$1 \mathrm{ft}^{3}=7.48$ gallons]

0817geo

Answer Section
1 ANS: 2 PTS: 2 REF: 081701geo NAT: G.GMD.B. 4
TOP: Cross-Sections of Three-Dimensional Objects
2 ANS: 4 PTS: 2 REF: 081702geo NAT: G.CO.A. 2
TOP: Identifying Transformations KEY: basic
3 ANS: 3
$4 \sqrt{(-1--3)^{2}+(5-1)^{2}}=4 \sqrt{20}$
PTS: 2 REF: 081703geo NAT: G.GPE.B. 7 TOP: Polygons in the Coordinate Plane
4 ANS: 1
Parallel chords intercept congruent arcs. $\frac{180-130}{2}=25$

PTS: 2 REF: 081704geo NAT: G.C.A. 2 TOP: Chords, Secants and Tangents
KEY: parallel lines
5 ANS: 4
$\frac{6.6}{x}=\frac{4.2}{5.25}$
$4.2 x=34.65$

$$
x=8.25
$$

PTS: 2 REF: 081705geo NAT: G.SRT.B. 5 TOP: Similarity
KEY: basic
6 ANS: 3
The x-axis and line $x=4$ are lines of symmetry and $(4,0)$ is a point of symmetry.
PTS: 2 REF: 081706geo NAT: G.CO.A. 3 TOP: Mapping a Polygon onto Itself
7 ANS: 4
$\frac{1}{3.5}=\frac{x}{18-x}$
$3.5 x=18-x$
$4.5 x=18$

$$
x=4
$$

PTS: 2 REF: 081707geo NAT: G.SRT.B. 5 TOP: Side Splitter Theorem

8 ANS: 4

PTS: 2 REF: 081708geo NAT: G.CO.C. 11 TOP: Interior and Exterior Angles of Polygons
9 ANS: 4
$\frac{36}{45} \neq \frac{15}{18}$

$$
\frac{4}{5} \neq \frac{5}{6}
$$

PTS: 2 REF: 081709geo NAT: G.SRT.A. 3 TOP: Similarity Proofs
10 ANS: 1
Since a dilation preserves parallelism, the line $4 y=3 x+7$ and its image $3 x-4 y=9$ are parallel, with slopes of $\frac{3}{4}$.
PTS: 2 REF: 081710geo NAT: G.SRT.A. 1 TOP: Line Dilations
11 ANS: 4

PTS: 2 REF: 081711geo NAT: G.CO.C. 10 TOP: Exterior Angle Theorem
12 ANS: 2
$x^{2}=3 \cdot 18$
$x=\sqrt{3 \cdot 3 \cdot 6}$
$x=3 \sqrt{6}$
PTS: 2 REF: 081712geo NAT: G.C.A. 2 TOP: Chords, Secants and Tangents
KEY: secant and tangent drawn from common point, length
13 ANS: 3

$$
\begin{aligned}
v=\pi r^{2} h & \text { (1) } 6^{2} \cdot 10=360 \\
150 \pi=\pi r^{2} h & \text { (2) } 10^{2} \cdot 6=600 \\
150=r^{2} h & \text { (3) } 5^{2} \cdot 6=150 \\
& \text { (4) } 3^{2} \cdot 10=900
\end{aligned}
$$

PTS: 2
REF: 081713geo NAT: G.GMD.B. 4 TOP: Rotations of Two-Dimensional Objects

14 ANS: 3
In (1) and (2), $A B C D$ could be a rectangle with non-congruent sides. (4) is not possible
PTS: 2 REF: 081714geo NAT: G.CO.C.11 TOP: Special Quadrilaterals
15 ANS: 1
$\tan x=\frac{1}{12}$

$$
x \approx 4.76
$$

PTS: 2 REF: 081715geo NAT: G.SRT.C. 8 TOP: Using Trigonometry to Find an Angle
16 ANS: 4 PTS: 2 REF: 081716geo NAT: G.CO.C. 10
TOP: Midsegments
17 ANS: 1
$-8+\frac{3}{8}(16--8)=-8+\frac{3}{8}(24)=-8+9=1-2+\frac{3}{8}(6--2)=-2+\frac{3}{8}(8)=-2+3=1$
PTS: 2 REF: 081717geo NAT: G.GPE.B. 6 TOP: Directed Line Segments
18 ANS: 2
$12^{2}=9 \cdot 16$
$144=144$
PTS: 2 REF: 081718geo NAT: G.SRT.B. 5 TOP: Similarity
KEY: leg
19 ANS: 1
$\sin 32=\frac{x}{6.2}$
$x \approx 3.3$
PTS: 2 REF: 081719geo NAT: G.SRT.C. 8 TOP: Using Trigonometry to Find a Side
20 ANS: 1
Illinois: $\frac{12830632}{231.1} \approx 55520$ Florida: $\frac{18801310}{350.6} \approx 53626$ New York: $\frac{19378102}{411.2} \approx 47126$ Pennsylvania:
$\frac{12702379}{283.9} \approx 44742$
PTS: 2 REF: 081720geo NAT: G.MG.A. 2 TOP: Density
21 ANS: 4
$40-x+3 x=90$

$$
\begin{aligned}
2 x & =50 \\
x & =25
\end{aligned}
$$

PTS: 2
REF: 081721geo NAT: G.SRT.C. 7 TOP: Cofunctions

22 ANS: 4
$\frac{360^{\circ}}{10}=36^{\circ} 252^{\circ}$ is a multiple of 36°
PTS: 2 REF: 081722geo NAT: G.CO.A. 3 TOP: Mapping a Polygon onto Itself
23 ANS: 2
$\frac{\frac{512 \pi}{3}}{\left(\frac{32}{2}\right)^{2} \pi} \cdot 2 \pi=\frac{4 \pi}{3}$
PTS: 2 REF: 081723geo NAT: G.C.B. 5 TOP: Sectors
24 ANS: 4
The segment's midpoint is the origin and slope is -2 . The slope of a perpendicular line is $\frac{1}{2} . \quad y=\frac{1}{2} x+0$

$$
\begin{aligned}
2 y & =x \\
2 y-x & =0
\end{aligned}
$$

PTS: 2 REF: 081724geo NAT: G.GPE.B. 5 TOP: Parallel and Perpendicular Lines
KEY: perpendicular bisector
25 ANS:
Yes. The bases of the cylinders have the same area and the cylinders have the same height.
PTS: 2 REF: 081725geo NAT: G.GMD.A. 1 TOP: Volume
26 ANS:
The four small triangles are 8-15-17 triangles. $4 \times 17=68$
PTS: 2 REF: 081726geo NAT: G.CO.C. 11 TOP: Special Quadrilaterals
27 ANS:
$R_{180^{\circ}}$ about $\left(-\frac{1}{2}, \frac{1}{2}\right)$
PTS: 2 REF: 081727geo NAT: G.CO.A. 5 TOP: Compositions of Transformations
KEY: identify
28 ANS:

PTS: 2
REF: 081728geo
NAT: G.CO.D. 13 TOP: Constructions

29 ANS:

$$
\sqrt{(2.5-1)^{2}+(-.5-1.5)^{2}}=\sqrt{2.25+4}=2.5
$$

PTS: 2
REF: 081729geo NAT: G.SRT.A. 2 TOP: Dilations
30 ANS:
Yes. $\angle A \cong \angle X, \angle C \cong \angle Z, \overline{A C} \cong \overline{X Z}$ after a sequence of rigid motions which preserve distance and angle measure, so $\triangle A B C \cong \triangle X Y Z$ by ASA. $\overline{B C} \cong \overline{Y Z}$ by СРСТС.

PTS: 2 REF: 081730geo NAT: G.CO.B. 7 TOP: Triangle Congruency
31 ANS:
$x^{2}-6 x+9+y^{2}+8 y+16=56+9+16(3,-4) ; r=9$

$$
(x-3)^{2}+(y+4)^{2}=81
$$

PTS: 2 REF: 081731geo NAT: G.GPE.A. 1 TOP: Equations of Circles KEY: completing the square
32

PTS: 4
REF: 081732geo NAT: G.GPE.B. 4 TOP: Triangles in the Coordinate Plane

33 ANS:
Circle O, tangent $\overline{E C}$ to diameter $\overline{A C}$, chord $\overline{B C} \|$ secant $\overline{A D E}$, and chord $\overline{A B}$ (given); $\angle B$ is a right angle (an angle inscribed in a semi-circle is a right angle); $\overleftrightarrow{E C} \perp \overline{O C}$ (a radius drawn to a point of tangency is perpendicular to the tangent); $\angle E C A$ is a right angle (perpendicular lines form right angles); $\angle B \cong \angle E C A$ (all right angles are congruent); $\angle B C A \cong \angle C A E$ (the transversal of parallel lines creates congruent alternate interior angles); $\triangle A B C \sim \triangle E C A(\mathrm{AA}) ; \frac{B C}{C A}=\frac{A B}{E C}$ (Corresponding sides of similar triangles are in proportion).

PTS: 4 REF: 081733geo NAT: G.SRT.B. 5 TOP: Circle Proofs
34 ANS:
$x^{2}+x^{2}=58^{2} \quad A=(\sqrt{1682}+8)^{2} \approx 2402.2$

$$
\begin{aligned}
2 x^{2} & =3364 \\
x & =\sqrt{1682}
\end{aligned}
$$

PTS: 4 REF: 081734geo NAT: G.MG.A. 3 TOP: Area of Polygons
35 ANS:
Isosceles trapezoid $A B C D, \angle C D E \cong \angle D C E, \overline{A E} \perp \overline{D E}$, and $\overline{B E} \perp \overline{C E}$ (given); $\overline{A D} \cong \overline{B C}$ (congruent legs of isosceles trapezoid); $\angle D E A$ and $\angle C E B$ are right angles (perpendicular lines form right angles); $\angle D E A \cong \angle C E B$ (all right angles are congruent); $\angle C D A \cong \angle D C B$ (base angles of an isosceles trapezoid are congruent);
$\angle C D A-\angle C D E \cong \angle D C B-\angle D C E$ (subtraction postulate); $\triangle A D E \cong \triangle B C E$ (AAS); $\overline{E A} \cong \overline{E B}$ (CPCTC);

$$
\angle E D A \cong \angle E C B
$$

$\triangle A E B$ is an isosceles triangle (an isosceles triangle has two congruent sides).
PTS: 6 REF: 081735geo NAT: G.SRT.B. 5 TOP: Quadrilateral Proofs
ANS:

$$
\begin{array}{rlrl}
\tan 16.5 & =\frac{x}{13.5} & 9 \times 16 \times 4.5 & =648 \quad 3752-(35 \times 16 \times .5)=3472 \\
x & \approx 4 & 13.5 \times 16 \times 4.5 & =972 \quad 3472 \times 7.48 \approx 25971 \\
4+4.5 & =8.5 & \frac{1}{2} \times 13.5 \times 16 \times 4 & =432 \\
& & \frac{25971}{10.5} \approx 2473.4 \\
12.5 \times 16 \times 8.5 & =\underline{1700} & \frac{2473.4}{60} \approx 41
\end{array}
$$

PTS: 6 REF: 081736geo NAT: G.GMD.A. 3 TOP: Volume
KEY: compositions

