0116geo

1 William is drawing pictures of cross sections of the right circular cone below.

Which drawing can not be a cross section of a cone?
1)

2)

3)

4)

2 An equation of a line perpendicular to the line represented by the equation $y=-\frac{1}{2} x-5$ and passing through $(6,-4)$ is

1) $y=-\frac{1}{2} x+4$
2) $y=-\frac{1}{2} x-1$
3) $y=2 x+14$
4) $y=2 x-16$

3 In parallelogram $Q R S T$ shown below, diagonal $\overline{T R}$ is drawn, U and V are points on $\overline{T S}$ and $\overline{Q R}$, respectively, and $\overline{U V}$ intersects $\overline{T R}$ at W.

If $\mathrm{m} \angle S=60^{\circ}, \mathrm{m} \angle S R T=83^{\circ}$, and $\mathrm{m} \angle T W U=35^{\circ}$, what is $\mathrm{m} \angle W V Q$?

1) 37°
2) 60°
3) 72°
4) 83°

4 A fish tank in the shape of a rectangular prism has dimensions of 14 inches, 16 inches, and 10 inches. The tank contains 1680 cubic inches of water. What percent of the fish tank is empty?

1) 10
2) 25
3) 50
4) 75

5 Which transformation would result in the perimeter of a triangle being different from the perimeter of its image?

1) $(x, y) \rightarrow(y, x)$
2) $(x, y) \rightarrow(x,-y)$
3) $(x, y) \rightarrow(4 x, 4 y)$
4) $(x, y) \rightarrow(x+2, y-5)$

6 In the diagram below, $\overleftrightarrow{F E}$ bisects $\overrightarrow{A C}$ at B, and $\overleftrightarrow{G E}$ bisects $\overline{B D}$ at C.

Which statement is always true?

1) $\overline{A B} \cong \overline{D C}$
2) $\overline{F B} \cong \overline{E B}$
3) $\overleftrightarrow{B D}$ bisects $\overline{G E}$ at C.
4) $\overleftrightarrow{A C}$ bisects $\overline{F E}$ at B.

7 As shown in the diagram below, a regular pyramid has a square base whose side measures 6 inches.

If the altitude of the pyramid measures 12 inches, its volume, in cubic inches, is

1) 72
2) 144
3) 288
4) 432

8 Triangle $A B C$ and triangle $D E F$ are graphed on the set of axes below.

Which sequence of transformations maps triangle $A B C$ onto triangle $D E F$?

1) a reflection over the x-axis followed by a reflection over the y-axis
2) a 180° rotation about the origin followed by a reflection over the line $y=x$
3) a 90° clockwise rotation about the origin followed by a reflection over the y-axis
4) a translation 8 units to the right and 1 unit up followed by a 90° counterclockwise rotation about the origin

9 In $\triangle A B C$, the complement of $\angle B$ is $\angle A$. Which statement is always true?

1) $\tan \angle A=\tan \angle B$
2) $\sin \angle A=\sin \angle B$
3) $\cos \angle A=\tan \angle B$
4) $\sin \angle A=\cos \angle B$

10 A line that passes through the points whose coordinates are $(1,1)$ and $(5,7)$ is dilated by a scale factor of 3 and centered at the origin. The image of the line

1) is perpendicular to the original line
2) is parallel to the original line
3) passes through the origin
4) is the original line

11 Quadrilateral $A B C D$ is graphed on the set of axes below.

When $A B C D$ is rotated 90° in a counterclockwise direction about the origin, its image is quadrilateral $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$. Is distance preserved under this rotation, and which coordinates are correct for the given vertex?

1) no and $C^{\prime}(1,2)$
2) no and $D^{\prime}(2,4)$
3) yes and $A^{\prime}(6,2)$
4) yes and $B^{\prime}(-3,4)$

12 In the diagram below of circle O, the area of the shaded sector $L O M$ is $2 \pi \mathrm{~cm}^{2}$.

If the length of $\overline{N L}$ is 6 cm , what is $\mathrm{m} \angle N$?

1) 10°
2) 20°
3) 40°
4) 80°

13 In the diagram below, $\triangle A B C \sim \triangle D E F$.

If $A B=6$ and $A C=8$, which statement will justify similarity by SAS?

1) $D E=9, D F=12$, and $\angle A \cong \angle D$
2) $D E=8, D F=10$, and $\angle A \cong \angle D$
3) $D E=36, D F=64$, and $\angle C \cong \angle F$
4) $D E=15, D F=20$, and $\angle C \cong \angle F$

14 The diameter of a basketball is approximately 9.5 inches and the diameter of a tennis ball is approximately 2.5 inches. The volume of the basketball is about how many times greater than the volume of the tennis ball?

1) 3591
2) 65
3) 55
4) 4

15 The endpoints of one side of a regular pentagon are $(-1,4)$ and $(2,3)$. What is the perimeter of the pentagon?

1) $\sqrt{10}$
2) $5 \sqrt{10}$
3) $5 \sqrt{2}$
4) $25 \sqrt{2}$

16 In the diagram of right triangle $A B C$ shown below, $A B=14$ and $A C=9$.

What is the measure of $\angle A$, to the nearest degree?

1) 33
2) 40
3) 50
4) 57

17 What are the coordinates of the center and length of the radius of the circle whose equation is
$x^{2}+6 x+y^{2}-4 y=23$?

1) $(3,-2)$ and 36
2) $(3,-2)$ and 6
3) $(-3,2)$ and 36
4) $(-3,2)$ and 6

18 The coordinates of the vertices of $\triangle R S T$ are $R(-2,-3), S(8,2)$, and $T(4,5)$. Which type of triangle is $\triangle R S T$?

1) right
2) acute
3) obtuse
4) equiangular

19 Molly wishes to make a lawn ornament in the form of a solid sphere. The clay being used to make the sphere weighs .075 pound per cubic inch. If the sphere's radius is 4 inches, what is the weight of the sphere, to the nearest pound?

1) 34
2) 20
3) 15
4) 4

20 The ratio of similarity of $\triangle B O Y$ to $\triangle G R L$ is $1: 2$. If $B O=x+3$ and $G R=3 x-1$, then the length of $\overline{G R}$ is

1) 5
2) 7
3) 10
4) 20

21 In the diagram below, $\overline{D C}, \overline{A C}, \overline{D O B}, \overline{C B}$, and $\overline{A B}$ are chords of circle $O, \overleftrightarrow{F D E}$ is tangent at point D, and radius $\overline{A O}$ is drawn. Sam decides to apply this theorem to the diagram: "An angle inscribed in a semi-circle is a right angle."

Which angle is Sam referring to?

1) $\angle A O B$
2) $\angle B A C$
3) $\angle D C B$
4) $\angle F D B$

22 In the diagram below, $\overline{C D}$ is the altitude drawn to the hypotenuse $\overline{A B}$ of right triangle $A B C$.

Which lengths would not produce an altitude that measures $6 \sqrt{2}$?

1) $A D=2$ and $D B=36$
2) $A D=3$ and $A B=24$
3) $A D=6$ and $D B=12$
4) $A D=8$ and $A B=17$

23 A designer needs to create perfectly circular necklaces. The necklaces each need to have a radius of 10 cm . What is the largest number of necklaces that can be made from 1000 cm of wire?

1) 15
2) 16
3) 31
4) 32

24 In $\triangle S C U$ shown below, points T and O are on $\overline{S U}$ and $\overline{C U}$, respectively. Segment $O T$ is drawn so that $\angle C \cong \angle O T U$.

If $T U=4, O U=5$, and $O C=7$, what is the length of $\overline{S T}$?

1) 5.6
2) 8.75
3) 11
4) 15

25 Triangle $A B C$ is graphed on the set of axes below. Graph and label $\triangle A^{\prime} B^{\prime} C^{\prime}$, the image of $\triangle A B C$ after a reflection over the line $x=1$.

26 In the diagram below of circle O with diameter $\overline{B C}$ and radius $\overline{O A}$, chord $\overline{D C}$ is parallel to chord $\overline{B A}$.

If $\mathrm{m} \angle B C D=30^{\circ}$, determine and state $\mathrm{m} \angle A O B$.
27 Directed line segment $P T$ has endpoints whose coordinates are $P(-2,1)$ and $T(4,7)$. Determine the coordinates of point J that divides the segment in the ratio 2 to 1 . [The use of the set of axes below is optional.]

28 As graphed on the set of axes below, $\triangle A^{\prime} B^{\prime} C^{\prime}$ is the image of $\triangle A B C$ after a sequence of transformations.

Is $\triangle A^{\prime} B^{\prime} C^{\prime}$ congruent to $\triangle A B C$? Use the properties of rigid motion to explain your answer.

29 A carpenter leans an extension ladder against a house to reach the bottom of a window 30 feet above the ground. As shown in the diagram below, the ladder makes a 70° angle with the ground. To the nearest foot, determine and state the length of the ladder.

30 During an experiment, the same type of bacteria is grown in two petri dishes. Petri dish A has a diameter of 51 mm and has approximately 40,000 bacteria after 1 hour. Petri dish B has a diameter of 75 mm and has approximately 72,000 bacteria after 1 hour.

Determine and state which petri dish has the greater population density of bacteria at the end of the first hour.

31 Line ℓ is mapped onto line m by a dilation centered at the origin with a scale factor of 2 . The equation of line ℓ is $3 x-y=4$. Determine and state an equation for line m.

32 The aspect ratio (the ratio of screen width to height) of a rectangular flat-screen television is 16:9. The length of the diagonal of the screen is the television's screen size. Determine and state, to the nearest inch, the screen size (diagonal) of this flat-screen television with a screen height of 20.6 inches.

Geometry CCSS Regents Exam 0116
www.jmap.org
33 Given the theorem, "The sum of the measures of the interior angles of a triangle is 180°," complete the proof for this theorem.

Given: $\triangle A B C$
Prove: $\mathrm{m} \angle 1+\mathrm{m} \angle 2+\mathrm{m} \angle 3=180^{\circ}$
Fill in the missing reasons below.

34 Triangle $X Y Z$ is shown below. Using a compass and straightedge, on the line below, construct and label $\triangle A B C$, such that $\triangle A B C \cong \triangle X Y Z$. [Leave all construction marks.] Based on your construction, state the theorem that justifies why $\triangle A B C$ is congruent to $\triangle X Y Z$.

35 Given: Parallelogram $A N D R$ with $\overline{A W}$ and $\overline{D E}$ bisecting $\overline{N W D}$ and $\overline{R E A}$ at points W and E, respectively

Prove that $\triangle A N W \cong \triangle D R E$. Prove that quadrilateral $A W D E$ is a parallelogram.

36 Cathy wants to determine the height of the flagpole shown in the diagram below. She uses a survey instrument to measure the angle of elevation to the top of the flagpole, and determines it to be 34.9°. She walks 8 meters closer and determines the new measure of the angle of elevation to be 52.8°. At each measurement, the survey instrument is 1.7 meters above the ground.

Determine and state, to the nearest tenth of a meter, the height of the flagpole.

0116geo

Answer Section

1 ANS: 1 PTS: 2 REF: 011601geo NAT: G.GMD.B. 4
TOP: Cross-Sections of Three-Dimensional Objects
2 ANS: 4
$m=-\frac{1}{2} \quad-4=2(6)+b$
$\begin{aligned} m_{\perp}=2 \quad-4 & =12+b \\ -16 & =b\end{aligned}$
PTS: 2 REF: 011602geo NAT: G.GPE.B. 5 TOP: Parallel and Perpendicular Lines
KEY: write equation of perpendicular line
3 ANS: 3

PTS: 2 REF: 011603geo NAT: G.CO.C. 11 TOP: Interior and Exterior Angles of Polygons
4 ANS: 2
$14 \times 16 \times 10=2240 \frac{2240-1680}{2240}=0.25$

PTS: 2 REF: 011604geo NAT: G.GMD.A. 3 TOP: Volume
KEY: prisms
5 ANS: 3 PTS: 2 REF: 011605geo NAT: G.CO.A. 2
TOP: Analytical Representations of Transformations KEY: basic
6 ANS: 1 PTS: 2 REF: 011606geo NAT: G.CO.C. 9
TOP: Lines and Angles
7 ANS: 2
$V=\frac{1}{3} \cdot 6^{2} \cdot 12=144$
PTS: 2 REF: 011607geo NAT: G.GMD.A. 3 TOP: Volume
KEY: pyramids
8 ANS: 1
PTS: 2
TOP: Compositions of Transformations
REF: 011608geo NAT: G.CO.A. 5
9 ANS: 4 PTS: 2
KEY: identify
TOP: Cofunctions
10 ANS: 2 PTS: 2
REF: 011610geo NAT: G.SRT.A. 1
TOP: Line Dilations
11 ANS: 4 PTS: 2
TOP: Properties of Transformations
REF: 011611geo NAT: G.CO.B. 6
KEY: graphics

12 ANS: 3
$\frac{x}{360} \cdot 3^{2} \pi=2 \pi \quad 180-80=100$

$$
x=80 \quad \frac{180-100}{2}=40
$$

PTS: 2 REF: 011612geo NAT: G.C.B. 5 TOP: Sectors
13 ANS: 1
$\frac{6}{8}=\frac{9}{12}$
PTS: 2 REF: 011613geo NAT: G.SRT.B. 5 TOP: Similarity
KEY: basic
14 ANS: 3
$\frac{\frac{4}{3} \pi\left(\frac{9.5}{2}\right)^{3}}{\frac{4}{3} \pi\left(\frac{2.5}{2}\right)^{3}} \approx 55$
PTS: 2 REF: 011614geo NAT: G.GMD.A. 3 TOP: Volume
KEY: spheres
15 ANS: 2
$\sqrt{(-1-2)^{2}+(4-3)^{2}}=\sqrt{10}$
PTS: 2 REF: 011615geo NAT: G.GPE.B. 7 TOP: Polygons in the Coordinate Plane
16 ANS: 3
$\cos A=\frac{9}{14}$

$$
A \approx 50^{\circ}
$$

PTS: 2 REF: 011616geo NAT: G.SRT.C. 8 TOP: Using Trigonometry to Find an Angle
17 ANS: 4
$x^{2}+6 x+9+y^{2}-4 y+4=23+9+4$
$(x+3)^{2}+(y-2)^{2}=36$
PTS: 2 REF: 011617geo NAT: G.GPE.A. 1 TOP: Equations of Circles
KEY: completing the square
18
$m_{\overline{R T}}=\frac{5--3}{4--2}=\frac{8}{6}=\frac{4}{3} m_{\overline{S T}}=\frac{5-2}{4-8}=\frac{3}{-4}=-\frac{3}{4}$ Slopes are opposite reciprocals, so lines form a right angle.
PTS: 2 REF: 011618geo NAT: G.GPE.B. 4 TOP: Triangles in the Coordinate Plane

19 ANS: 2
$\frac{4}{3} \pi \cdot 4^{3}+0.075 \approx 20$
PTS: 2 REF: 011619geo NAT: G.MG.A. 2 TOP: Density
20 ANS: 4

$$
\begin{aligned}
\frac{1}{2} & =\frac{x+3}{3 x-1} \quad G R=3(7)-1=20 \\
3 x-1 & =2 x+6 \\
x & =7
\end{aligned}
$$

PTS: 2
REF: 011620geo
NAT: G.SRT.B. 5 TOP: Similarity
KEY: basic
21 ANS: 3
PTS: 2
TOP: Chords, Secants and Tangents
REF: 011621geo NAT: G.C.A. 2
KEY: inscribed

22
$\sqrt{3 \cdot 21}=\sqrt{63}=3 \sqrt{7}$
PTS: 2
KEY: altitude
23 ANS: 1
$\frac{1000}{20 \pi} \approx 15.9$

PTS: 2 REF: 011623geo NAT: G.GMD.A. 1 TOP: Circumference
24 ANS: 3
$\frac{12}{4}=\frac{x}{5} \quad 15-4=11$
$x=15$

PTS: 2
REF: 011624geo
NAT: G.SRT.B. 5 TOP: Similarity KEY: basic
ANS:

PTS: 2
KEY: grids

REF: 011622geo NAT: G.SRT.B. 5 TOP: Similarity
: 3
$x=15$

RE:

26
ANS:

$$
180-2(30)=120
$$

PTS: 2
REF: 011626geo NAT: G.C.A. 2 TOP: Chords, Secants and Tangents KEY: parallel lines

$$
\begin{aligned}
& x=\frac{2}{3}(4--2)=4 \quad-2+4=2 J(2,5) \\
& y=\frac{2}{3}(7-1)=4 \quad 1+4=5
\end{aligned}
$$

PTS: 2 REF: 011627geo NAT: G.GPE.B. 6 TOP: Directed Line Segments
28 ANS:
Yes. The sequence of transformations consists of a reflection and a translation, which are isometries which preserve distance and congruency.

PTS: 2 REF: 011628geo NAT: G.CO.B. 7 TOP: Triangle Congruency
29 ANS:
$\sin 70=\frac{30}{L}$
$L \approx 32$
PTS: 2 REF: 011629geo NAT: G.SRT.C. 8 TOP: Using Trigonometry to Find a Side KEY: graphics
30
$\frac{40000}{\pi\left(\frac{51}{2}\right)^{2}} \approx 19.6 \frac{72000}{\pi\left(\frac{75}{2}\right)^{2}} \approx 16.3 \operatorname{Dish} A$
PTS: 2
REF: 011630geo
NAT: G.MG.A. 2 TOP: Density

31 ANS:
$\ell: y=3 x-4$
$m: y=3 x-8$
PTS: 2 REF: 011631geo NAT: G.SRT.A. 1 TOP: Line Dilations
32 ANS:
$\frac{16}{9}=\frac{x}{20.6} \quad D=\sqrt{36.6^{2}+20.6^{2}} \approx 42$

$$
x \approx 36.6
$$

PTS: 4 REF: 011632geo NAT: G.SRT.C. 8 TOP: Pythagorean Theorem KEY: without graphics
33 ANS:
(2) Euclid's Parallel Postulate; (3) Alternate interior angles formed by parallel lines and a transversal are congruent; (4) Angles forming a line are supplementary; (5) Substitution

PTS: 4 REF: 011633geo NAT: G.CO.C. 10 TOP: Triangle Proofs
34 ANS:

PTS: 4 REF: 011634geo NAT: G.CO.D. 12 TOP: Constructions
KEY: congruent and similar figures
35 ANS:
Parallelogram $A N D R$ with $\overline{A W}$ and $\overline{D E}$ bisecting $\overline{N W D}$ and $\overline{R E A}$ at points W and E (Given). $\overline{A N} \cong \overline{R D}$, $\overline{A R} \cong \overline{D N}$ (Opposite sides of a parallelogram are congruent). $A E=\frac{1}{2} A R, W D=\frac{1}{2} D N$, so $\overline{A E} \cong \overline{W D}$ (Definition of bisect and division property of equality). $\overline{A R} \| \overline{D N}$ (Opposite sides of a parallelogram are parallel). $A W D E$ is a parallelogram (Definition of parallelogram). $R E=\frac{1}{2} A R, N W=\frac{1}{2} D N$, so $\overline{R E} \cong \overline{N W}$ (Definition of bisect and division property of equality). $\overline{E D} \cong \overline{A W}$ (Opposite sides of a parallelogram are congruent). $\triangle A N W \cong \triangle D R E$ (SSS).

PTS: 6 REF: 011635geo NAT: G.SRT.B. 5 TOP: Quadrilateral Proofs

36 ANS:

$$
\begin{array}{rlrl}
\tan 52.8 & =\frac{h}{x} & x \tan 52.8 & =x \tan 34.9+8 \tan 34.9 \tan 52.8 \approx \frac{h}{9} \quad 11.86+1.7 \approx 13.6 \\
h & =x \tan 52.8 & x \tan 52.8-x \tan 34.9 & =8 \tan 34.9 \\
\tan 34.9 & =\frac{h}{x+8} & x(\tan 52.8-\tan 34.9) & =8 \tan 34.9 \\
h & =(x+8) \tan 34.9 & x & =\frac{8 \tan 34.9}{\tan 52.8-\tan 34.9} \\
& x & \approx 9
\end{array}
$$

PTS: 6
REF: 011636geo NAT: G.SRT.C. 8 TOP: Using Trigonometry to Find a Side
KEY: advanced

