0124AI

1 The graph below represents a dog walker's speed during his 30 -minute walk around the neighborhood.

Which statement best describes what the dog walker was doing during the 12-18 minute interval of his walk?

1) He was walking at a constant rate.
2) He was decreasing his speed.
3) He was increasing his speed.
4) He was standing still.

2 Given the relation: $\{(0,4),(2,6),(4,8),(x, 7)\}$
Which value of x will make this relation a function?

1) 0
2) 2
3) 6
4) 4

3 The Speedy Jet Ski Rental Company charges an insurance fee and an hourly rental rate. The total cost is modeled by the function $R(x)=30+40 x$. Based on this model, which statements are true?
I. $R(x)$ represents the total cost.
II. x is the number of hours rented.
III. $\$ 40$ is the insurance fee.
IV. $\$ 30$ is the hourly rental rate.

1) I, only
2) I, III, and IV, only
3) I and II, only
4) I, II, III, and IV

4 The eleventh term of the sequence $3,-6,12,-24, \ldots$, is

1) -3072
2) -6144
3) 3072
4) 6144

5 Which situation represents exponential growth?

1) Aidan adds $\$ 10$ to a jar each week.
2) Ella earns $\$ 20$ per hour babysitting.
3) A pine tree grows 1.5 feet per year.
4) The number of people majoring in computer science doubles every 5 years.

6 The expression $\left(-x^{2}+3 x-7\right)-\left(4 x^{2}+5 x-2\right)$ is equivalent to

1) $-5 x^{2}-2 x-9$
2) $-5 x^{2}-2 x-5$
3) $-5 x^{2}+8 x-9$
4) $-5 x^{2}+8 x-5$

7 If $f(x)=x^{2}$, which function is the result of shifting $f(x) 3$ units left and 2 units down?

1) $g(x)=(x+2)^{2}-3$
2) $g(x)=(x-2)^{2}+3$
3) $g(x)=(x+3)^{2}-2$
4) $g(x)=(x-3)^{2}+2$

8 An equation used to find the velocity of an object is given as $v^{2}=u^{2}+2 a s$, where u is the initial velocity, v is the final velocity, a is the acceleration of the object, and s is the distance traveled. When this equation is solved for a, the result is

1) $a=\frac{v^{2} u^{2}}{2 s}$
2) $a=\frac{v^{2}-u^{2}}{2 s}$
3) $a=v^{2}-u^{2}-2 s$
4) $a=2 s\left(v^{2}-u^{2}\right)$

9 Mrs. Smith's math class surveyed students to determine their favorite flavors of soft ice cream. The results are shown in the table below.

	Chocolate	Vanilla	Twist
Juniors	42	27	45
Seniors	67	42	21

Of the students who preferred chocolate, approximately what percentage were seniors?

1) 27.5
2) 44.7
3) 51.5
4) 61.5

10 If $f(x)=x^{2}+2 x+1$ and $g(x)=3 x+5$, then what is the value of $f(1)-g(3)$?

1) 10
2) 8
3) -10
4) -8

11 Which function has the largest y-intercept?

1) $f(x)=-4 x-1$
2) $g(x)=|x|+3$

\mathbf{x}	$\mathbf{h}(\mathbf{x})$
-1	1.5
0	2
1	3
2	5

4)

12 Two texting plans are advertised. Plan A has a monthly fee of $\$ 15$ with a charge of $\$ 0.08$ per text. Plan B has a monthly fee of $\$ 3$ with a charge of $\$ 0.12$ per text. If t represents the number of text messages in a month, which inequality should be used to show that the cost of Plan A is less than the cost of Plan B ?

1) $15+0.08 t<3+0.12 t$
2) $15+0.08 t>3+0.12 t$
3) $15 t+0.08<3 t+0.12$
4) $15 t+0.08>3 t+0.12$

13 The function $f(x)$ is graphed on the set of axes below.

What is the equation of the axis of symmetry for $f(x)$?

1) $x=-1$
2) $x=-3$
3) $y=-1$
4) $y=-3$

14 What is the degree of the polynomial $5 x-3 x^{2}-1+7 x^{3}$?

1) 1
2) 2
3) 3
4) 5

15 The product of $\left(x^{2}+3 x+9\right)$ and $(x-3)$ is

1) $x^{3}-27$
2) $x^{2}+4 x+6$
3) $x^{3}-6 x^{2}-18 x-27$
4) $-6 x^{4}+x^{3}-18 x^{2}-27$

16 The solution to $\frac{2}{3}(3-2 x)=\frac{3}{4}$ is

1) $-\frac{11}{8}$
2) $\frac{5}{8}$
3) $-\frac{33}{16}$
4) $\frac{15}{16}$

17 If $f(x)=2 x+6$ and $g(x)=|x|$ are graphed on the same coordinate plane, for which value of x is $f(x)=g(x)$?

1) 6
2) 2
3) -2
4) -6

18 What is the solution to the inequality $2 x-7>2.5 x+3$?

1) $x>-5$
2) $x<-5$
3) $x>-20$
4) $x<-20$

19 Three expressions are written below.
A. $\left(2 x y^{2}\right)^{3}$
B. $(2 x)^{3} y^{6}$
C. $\left(2 x^{2} y^{2}\right)\left(4 x y^{3}\right)$

Which expressions are equivalent to $8 x^{3} y^{6}$?

1) A and B, only
2) B and C, only
3) A and C, only
4) A, B, and C

20 Joe deposits $\$ 4000$ into a certificate of deposit (CD) at his local bank. The CD earns 3% interest, compounded annually. The value of the CD in x years can be found using the function

1) $f(x)=4000+0.3 x$
2) $f(x)=4000+0.03 x$
3) $f(x)=4000(1.3)^{x}$
4) $f(x)=4000(1.03)^{x}$

21 When factored completely, $-x^{3}+10 x^{2}+24 x$ is

1) $-x(x+4)(x-6)$
2) $-x(x-4)(x-6)$
3) $-x(x+2)(x-12)$
4) $-x(x-2)(x+12)$

22 When the temperature is $59^{\circ} \mathrm{F}$, the speed of sound at sea level is 1225 kilometers per hour. Which process could be used to convert this speed into feet per second?

1) $\frac{1225 \mathrm{~km}}{1 \mathrm{hr}} \bullet \frac{0.62 \mathrm{mi}}{1 \mathrm{~km}} \bullet \frac{1 \mathrm{hr}}{60 \mathrm{~min}} \bullet \frac{1 \mathrm{mi}}{5280 \mathrm{ft}} \bullet \frac{1 \mathrm{~min}}{60 \mathrm{sec}}$
2) $\frac{1225 \mathrm{~km}}{1 \mathrm{hr}} \bullet \frac{0.62 \mathrm{mi}}{1 \mathrm{~km}} \bullet \frac{5280 \mathrm{ft}}{1 \mathrm{mi}} \bullet \frac{1 \mathrm{hr}}{60 \mathrm{~min}} \bullet \frac{1 \mathrm{~min}}{60 \mathrm{sec}}$
3) $\frac{1225 \mathrm{~km}}{1 \mathrm{hr}} \bullet \frac{1 \mathrm{~km}}{0.62 \mathrm{mi}} \bullet \frac{5280 \mathrm{ft}}{1 \mathrm{mi}} \bullet \frac{1 \mathrm{hr}}{60 \mathrm{~min}} \bullet \frac{1 \mathrm{~min}}{60 \mathrm{sec}}$
4) $\frac{1225 \mathrm{~km}}{1 \mathrm{hr}} \bullet \frac{0.62 \mathrm{mi}}{1 \mathrm{~km}} \bullet \frac{5280 \mathrm{ft}}{1 \mathrm{mi}} \bullet \frac{60 \mathrm{~min}}{1 \mathrm{hr}} \bullet \frac{1 \mathrm{~min}}{60 \mathrm{sec}}$

23 The zeros of a polynomial function are $-2,4$, and 0 . What are all the factors of this function?

1) $(x+2)$ and $(x-4)$
2) $(x-2)$ and $(x+4)$
3) $x,(x+2)$, and $(x-4)$
4) $x,(x-2)$, and $(x+4)$

24 What is the range of the function $f(x)=(x-4)^{2}+1$?

1) $x>4$
2) $x \geq 4$
3) $f(x)>1$
4) $f(x) \geq 1$

Algebra I Regents Exam 0124
www.jmap.org
25 Student scores on a recent test are shown in the table below.

85	96	92	82	90
90	88	95	85	88
90	87	96	82	85
92	96	85	92	87

On the number line below, create a dot plot to model the data.

State the median test score for the data set.

26 State whether $2 \sqrt{3}+6$ is rational or irrational. Explain your answer.

27 The table below shows data from a recent car trip for the Burke family.

Hours After Leaving (x)	1	2	3	4	5
Miles from Home (y)	45	112	178	238	305

State the average rate of change for the distance traveled between hours 2 and 4. Include appropriate units.

Algebra I Regents Exam 0124

www.jmap.org
28 On the set of axes below, graph the equation $3 y+2 x=15$.

Explain why $(-6,9)$ is a solution to the equation.

29 Using the quadratic formula, solve $3 x^{2}-2 x-6=0$ for all values of x. Round your answers to the nearest hundredth.

30 The piecewise function $f(x)$ is given below.

$$
f(x)= \begin{cases}2 x-3, & x>3 \\ -x^{2}+15, & x \leq 3\end{cases}
$$

State the value of $f(3)$. Justify your answer.

31 Express the equation $x^{2}-8 x=-41$ in the form $(x-p)^{2}=q$.

32 Factor $36-4 x^{2}$ completely.

33 While playing golf, Laura hit her ball from the ground. The height, in feet, of her golf ball can be modeled by $h(t)=-16 t^{2}+48 t$, where t is the time in seconds. Graph $h(t)$ on the set of axes below.

What is the maximum height, in feet, that the golf ball reaches on this hit? How many seconds does it take the golf ball to hit the ground?

34 The table below shows the number of SAT prep classes five students attended and the scores they received on the test.

Number of Prep Classes Attended (x)	3	1	6	7	6
Math SAT Score (y)	500	410	620	720	500

State the linear regression equation for this data set, rounding all values to the nearest hundredth. State the correlation coefficient, rounded to the nearest hundredth. State what this correlation coefficient indicates about the linear fit of the data.

35 Julia is 4 years older than twice Kelly's age, x. The product of their ages is 96 . Write an equation that models this situation. Determine Kelly's age algebraically. State the difference between Julia's and Kelly's ages, in years.

Algebra I Regents Exam 0124

www.jmap.org
36 On the set of axes below, graph the following system of inequalities:

$$
\begin{aligned}
& 2 x-y>4 \\
& x+3 y>6
\end{aligned}
$$

Label the solution set S.

Is $(4,2)$ a solution to this system? Justify your answer.

37 Jim had a bag of coins. The number of nickels, n, and the number of quarters, q, totaled 28 coins. The combined value of the coins was $\$ 4$. Write a system of equations that models this situation. Use your system of equations to algebraically determine both the number of quarters, q, and the number of nickels, n, that Jim had in the bag. Jim was given an additional $\$ 3.00$ that was made up of equal numbers of nickels and quarters. How many of each coin was he given? Justify your answer.

Answer Section

1 ANS: $1 \quad$ PTS: 2
TOP: Relating Graphs to Events
2 ANS: 3 PTS: 2
TOP: Defining Functions
3 ANS: $2 \quad$ PTS: 2
TOP: Modeling Linear Functions
4 ANS: 3
$a_{11}=3(-2)^{11-1}=3072$
PTS: 2
REF: 012404ai
NAT: F.BF.A. 1 TOP: Sequences
KEY: explicit
5 ANS: 4
PTS: 2
REF: 012405ai NAT: F.LE.A. 1
TOP: Families of Functions
6 ANS: $2 \quad$ PTS: 2
TOP: Operations with Polynomials
7 ANS: 3
PTS: 2
TOP: Graphing Polynomial Functions
8 ANS: 2
$v^{2}-u^{2}=2 a s$
$\frac{v^{2}-u^{2}}{2 s}=\frac{2 a s}{2 s}$
$\frac{v^{2}-u^{2}}{2 s}=a$
PTS: 2
REF: 012408ai
9 ANS: 4
$\frac{67}{42+67} \approx 0.615$
PTS: 2
REF: 012409ai
KEY: two-way
10 ANS: 3
$f(1)=1^{2}+2(1)+1=4$
$g(3)=3(3)+5=14$
$f(1)-g(3)=-10$
PTS: 2 REF: 012410ai NAT: F.IF.A. 2 TOP: Functional Notation
11 ANS: 3

1) -1 ;2) 2 ; 3) 3 ; 4) 1

PTS: 2
REF: 012411ai

TOP: Comparing Functions

12 ANS: $1 \quad$ PTS: 2
TOP: Modeling Linear Inequalities
13 ANS: $1 \quad$ PTS: 2
TOP: Graphing Quadratic Functions
14 ANS: 3 PTS: 2
TOP: Modeling Expressions
15 ANS: 1
$\left(x^{2}+3 x+9\right)(x-3)=x^{3}-3 x^{2}+3 x^{2}-9 x+9 x-27=x^{3}-27$
PTS: 2 REF: 012415ai NAT: A.APR.A. 1 TOP: Operations with Polynomials
KEY: multiplication
16 ANS: 4

$$
\frac{3}{2}\left(\frac{2}{3}(3-2 x)=\frac{3}{4}\right)
$$

$$
3-2 x=\frac{9}{8}
$$

$$
24-16 x=9
$$

$$
15=16 x
$$

$$
x=\frac{15}{16}
$$

PTS: 2
REF: 012416ai
NAT: A.REI.B. 3 TOP: Solving Linear Equations
17 ANS: 3

PTS: 2
REF: 012417ai
NAT: A.REI.D. 11 TOP: Other Systems
18
ANS: 4
$2 x-7>2.5 x+3$
$-10>0.5 x$
$-20>x$
PTS: 2
19 ANS: 1
$C=8 x^{3} y^{5}$
PTS: 2
REF: 012419ai
NAT: A.APR.A. 1 TOP: Powers of Powers

20 ANS: 4 PTS: 2 REF: 012420ai NAT: F.BF.A. 1
TOP: Modeling Exponential Functions
21 ANS: 3
$-x^{3}+10 x^{2}+24 x=-x\left(x^{2}-10 x-24\right)=-x(x+2)(x-12)$
PTS: 2 REF: 012421ai NAT: A.SSE.A. 2 TOP: Factoring Polynomials
22 ANS: 2
PTS: 2 REF: 012422ai NAT: N.Q.A. 1
TOP: Conversions
23 ANS: 3 PTS: 2 REF: 012423ai NAT: A.APR.B. 3
TOP: Zeros of Polynomials
24 ANS: 4
Vertex (4, 1)
PTS: 2 REF: 012424ai NAT: F.IF.A. 2 TOP: Domain and Range
25 ANS:

PTS: 2 REF: 012425ai NAT: S.ID.A. 1 TOP: Dot Plots
ANS:
$2 \sqrt{3}+6$ is irrational because it can not be written as the ratio of two integers.
PTS: 2 REF: 012426ai NAT: N.RN.B. 3 TOP: Operations with Radicals
KEY: classify
27
$\frac{238-112}{4-2}=63 \mathrm{mph}$
PTS: 2
28
ANS:

PTS: 2
$(-6,9)$ is a solution to the equation because it falls on the line.
REF: 012428ai NAT: F.IF.B. 4 TOP: Graphing Linear Functions

29 ANS:
$x=\frac{2 \pm \sqrt{(-2)^{2}-4(3)(-6)}}{2(3)} \approx 1.79,-1.12$
PTS: 2 REF: 012429ai NAT: A.REI.B. 4 TOP: Solving Quadratics
KEY: quadratic formula
30 ANS:
$f(3)=-(3)^{2}+15=6$
PTS: 2 REF: 012430ai NAT: F.IF.A. 2 TOP: Functional Notation
31 ANS:
$x^{2}-8 x+16=-41+16$
$(x-4)^{2}=-25$
PTS: 2 REF: 012431ai NAT: A.REI.B. 4 TOP: Solving Quadratics
KEY: completing the square
32 ANS:
$36-4 x^{2}=4\left(9-x^{2}\right)=4(3+x)(3-x)$
PTS: 2 REF: 012432ai NAT: A.SSE.A. 2
TOP: Factoring the Difference of Perfect Squares
33

36, 3
PTS: 4 REF: 012433ai NAT: F.IF.B. 4 TOP: Graphing Quadratic Functions
KEY: graph
34 ANS:
$y=40.48 x+363.81,0.84$, strong
PTS: 4
REF: 012434ai
NAT: S.ID.B. 6 TOP: Regression
KEY: linear with correlation coefficient

35 ANS:

$$
\begin{array}{rlrl}
x(2 x+4)=96 & 2 x^{2}+4 x-96 & =0 & 2(6)+4=16 \\
x^{2}+2 x-48 & =0 & 16-6=10 \\
(x+8)(x-6) & =0 \\
x & =6
\end{array}
$$

PTS: 4
REF: 012435ai
ANS:

PTS: 4
37
ANS:

$$
\begin{aligned}
& n+q=28.05(28-q)+.25 q=4 \quad n+13=28.25 x+.05 x=3 \\
& .05 n+.25 q=4 \quad 1.4-.05 q+.25 q=4 \\
& .2 q=2.6 \\
& q=13 \\
& n=15 \quad .3 x=3 \\
& x=10
\end{aligned}
$$

Yes, as $(4,2)$ falls within S.

PTS: 6
REF: 012437ai
NAT: A.CED.A. 3 TOP: Modeling Linear Systems

