JMAP
REGENTS BY TYPE

The NY Geometry Regents Exam Questions from Spring 2014 to August 2019 Sorted by Type

www.jmap.org
1 In the diagram below, \(\overline{AC} \) and \(\overline{BD} \) intersect at \(E \).

Which information is always sufficient to prove \(\triangle ABE \cong \triangle CDE \)?

1) \(AB \parallel CD \)
2) \(AB \cong CD \) and \(BE \cong DE \)
3) \(E \) is the midpoint of \(AC \).
4) \(BD \) and \(AC \) bisect each other.

2 In quadrilateral \(QRST \), diagonals \(\overline{QS} \) and \(\overline{RT} \) intersect at \(M \). Which statement would always prove quadrilateral \(QRST \) is a parallelogram?

1) \(\angle TQR \) and \(\angle QRS \) are supplementary.
2) \(QM \cong SM \) and \(QT \cong RS \)
3) \(QR \cong TS \) and \(QT \cong RS \)
4) \(QR \cong TS \) and \(QT \parallel RS \)

3 Line segment \(A'B' \), whose endpoints are \((4, -2)\) and \((16, 14)\), is the image of \(AB \) after a dilation of \(\frac{1}{2} \) centered at the origin. What is the length of \(AB' \)?

1) 5
2) 10
3) 20
4) 40

4 In \(\triangle ABC \) below, angle \(C \) is a right angle.

Which statement must be true?

1) \(\sin A = \cos B \)
2) \(\sin A = \tan B \)
3) \(\sin B = \tan A \)
4) \(\sin B = \cos B \)

5 A 12-foot ladder leans against a building and reaches a window 10 feet above ground. What is the measure of the angle, to the nearest degree, that the ladder forms with the ground?

1) 34
2) 40
3) 50
4) 56

6 The coordinates of vertices \(A \) and \(B \) of \(\triangle ABC \) are \(A(3, 4) \) and \(B(3, 12) \). If the area of \(\triangle ABC \) is 24 square units, what could be the coordinates of point \(C \)?

1) \((3, 6) \)
2) \((8, -3) \)
3) \((-3, 8) \)
4) \((6, 3) \)
7 A line that passes through the points whose coordinates are (1,1) and (5,7) is dilated by a scale factor of 3 and centered at the origin. The image of the line
 1) is perpendicular to the original line
 2) is parallel to the original line
 3) passes through the origin
 4) is the original line

8 Which transformation would not always produce an image that would be congruent to the original figure?
 1) translation
 2) dilation
 3) rotation
 4) reflection

9 The figure below shows a rhombus with noncongruent diagonals.

Which transformation would not carry this rhombus onto itself?
 1) a reflection over the shorter diagonal
 2) a reflection over the longer diagonal
 3) a clockwise rotation of 90° about the intersection of the diagonals
 4) a counterclockwise rotation of 180° about the intersection of the diagonals

10 Given MN shown below, with $M(-6,1)$ and $N(3,-5)$, what is an equation of the line that passes through point $P(6,1)$ and is parallel to MN?

11 The coordinates of the vertices of $\triangle RST$ are $R(-2,-3)$, $S(8,2)$, and $T(4,5)$. Which type of triangle is $\triangle RST$?
 1) right
 2) acute
 3) obtuse
 4) equiangular
12. In the diagram below, $\triangle ERM \sim \triangle JTM$.

Which statement is always true?
1) $\cos J = \frac{RM}{RE}$
2) $\cos R = \frac{JM}{JT}$
3) $\tan T = \frac{RM}{EM}$
4) $\tan E = \frac{TM}{JM}$

13. In parallelogram $QRST$ shown below, diagonal \overline{TR} is drawn, U and V are points on \overline{TS} and \overline{QR}, respectively, and \overline{UV} intersects \overline{TR} at W.

If $\angle S = 60^\circ$, $\angle SRT = 83^\circ$, and $\angle TWU = 35^\circ$, what is $\angle WVQ$?
1) 37°
2) 60°
3) 72°
4) 83°

14. As shown in the diagram below, \overline{AB} and \overline{CD} intersect at E, and $AC \parallel BD$.

Given $\triangle AEC \sim \triangle BED$, which equation is true?
1) $\frac{CE}{DE} = \frac{EB}{EA}$
2) $\frac{AE}{BE} = \frac{AC}{BD}$
3) $\frac{EC}{AE} = \frac{BE}{ED}$
4) $\frac{ED}{EC} = \frac{AC}{BD}$

15. A man who is 5 feet 9 inches tall casts a shadow of 8 feet 6 inches. Assuming that the man is standing perpendicular to the ground, what is the angle of elevation from the end of the shadow to the top of the man’s head, to the nearest tenth of a degree?
1) 34.1
2) 34.5
3) 42.6
4) 55.9
16 The equation of a circle is \(x^2 + 8x + y^2 - 12y = 144 \). What are the coordinates of the center and the length of the radius of the circle?
1) center \((4, -6)\) and radius 12
2) center \((-4, 6)\) and radius 12
3) center \((4, -6)\) and radius 14
4) center \((-4, 6)\) and radius 14

17 In the diagram below of \(\triangle ACD \), \(DB \) is a median to \(AC \), and \(AB \cong DB \).

If \(m\angle DAB = 32^\circ \), what is \(m\angle BDC \)?
1) 32º
2) 52º
3) 58º
4) 64º

18 If the rectangle below is continuously rotated about side \(w \), which solid figure is formed?

1) pyramid
2) rectangular prism
3) cone
4) cylinder

19 In the diagram below, the circle shown has radius 10. Angle \(B \) intercepts an arc with a length of \(2\pi \).

What is the measure of angle \(B \), in radians?
1) 10 + 2\(\pi \)
2) 20\(\pi \)
3) \(\frac{\pi}{5} \)
4) \(\frac{5}{\pi} \)

20 In the diagram below of \(\triangle ABC \), \(D \) is a point on \(BA \), \(E \) is a point on \(BC \), and \(DE \) is drawn.

If \(BD = 5 \), \(DA = 12 \), and \(BE = 7 \), what is the length of \(BC \) so that \(AC \parallel DE \)?
1) 23.8
2) 16.8
3) 15.6
4) 8.6
21 In parallelogram \(PQRS\), \(QP\) is extended to point \(T\) and \(ST\) is drawn.

If \(ST \cong SP\) and \(\angle R = 130^\circ\), what is \(\angle PST\)?
1) 130°
2) 80°
3) 65°
4) 50°

22 Which transformation would result in the perimeter of a triangle being different from the perimeter of its image?
1) \((x,y) \rightarrow (y,x)\)
2) \((x,y) \rightarrow (x,-y)\)
3) \((x,y) \rightarrow (4x,4y)\)
4) \((x,y) \rightarrow (x+2,y-5)\)

23 Quadrilateral \(ABCD\) with diagonals \(AC\) and \(BD\) is shown in the diagram below.

Which information is not enough to prove \(ABCD\) is a parallelogram?
1) \(AB \cong CD\) and \(AB \parallel DC\)
2) \(AB \cong CD\) and \(BC \cong DA\)
3) \(AB \cong CD\) and \(BC \parallel AD\)
4) \(AB \parallel DC\) and \(BC \parallel AD\)

24 In the diagram below, congruent figures 1, 2, and 3 are drawn.

Which sequence of transformations maps figure 1 onto figure 2 and then figure 2 onto figure 3?
1) a reflection followed by a translation
2) a rotation followed by a translation
3) a translation followed by a reflection
4) a translation followed by a rotation

25 In circle \(O\) shown below, diameter \(AC\) is perpendicular to \(CD\) at point \(C\), and chords \(AB\), \(BC\), \(AE\), and \(CE\) are drawn.

Which statement is not always true?
1) \(\angle ACB \cong \angle BCD\)
2) \(\angle ABC \cong \angle ACD\)
3) \(\angle BAC \cong \angle DCB\)
4) \(\angle CBA \cong \angle AEC\)
26 As shown in the diagram below, a regular pyramid has a square base whose side measures 6 inches.

![Diagram of a regular pyramid]

If the altitude of the pyramid measures 12 inches, its volume, in cubic inches, is
1) 72
2) 144
3) 288
4) 432

27 What are the coordinates of point C on the directed segment from A(−8,4) to B(10,−2) that partitions the segment such that AC:CB is 2:1?
1) (1,1)
2) (−2,2)
3) (2,−2)
4) (4,0)

28 Kevin’s work for deriving the equation of a circle is shown below.

\[x^2 + 4x = -(y^2 - 20) \]

STEP 1 \[x^2 + 4x = -y^2 + 20 \]
STEP 2 \[x^2 + 4x + 4 = -y^2 + 20 - 4 \]
STEP 3 \((x + 2)^2 = -y^2 + 20 - 4 \)
STEP 4 \((x + 2)^2 + y^2 = 16 \)

In which step did he make an error in his work?
1) Step 1
2) Step 2
3) Step 3
4) Step 4

29 In the diagram below, \(\overline{DC}, \overline{AC}, \overline{DOB}, \overline{CB}, \) and \(\overline{AB} \) are chords of circle \(O, \) \(\overrightarrow{FDE} \) is tangent at point \(D, \) and radius \(\overline{AO} \) is drawn. Sam decides to apply this theorem to the diagram: “An angle inscribed in a semi-circle is a right angle.”

![Diagram of a circle with chords and tangent]

Which angle is Sam referring to?
1) \(\angle AOB \)
2) \(\angle BAC \)
3) \(\angle DCB \)
4) \(\angle FDB \)

30 In the diagram below, lines \(\ell, m, n, \) and \(p \) intersect line \(r. \)

![Diagram with intersecting lines]

Which statement is true?
1) \(\ell \parallel n \)
2) \(\ell \parallel p \)
3) \(m \parallel p \)
4) \(m \parallel n \)
31 In right triangle ABC, $m\angle C = 90^\circ$ and $AC \neq BC$. Which trigonometric ratio is equivalent to $\sin B$?
1) $\cos A$
2) $\cos B$
3) $\tan A$
4) $\tan B$

32 In the diagram below, $\triangle ABE$ is the image of $\triangle ACD$ after a dilation centered at the origin. The coordinates of the vertices are $A(0,0)$, $B(3,0)$, $C(4.5,0)$, $D(0,6)$, and $E(0,4)$.

The ratio of the lengths of BE to CD is
1) $\frac{2}{3}$
2) $\frac{3}{2}$
3) $\frac{3}{4}$
4) $\frac{4}{3}$

33 Line $y = 3x - 1$ is transformed by a dilation with a scale factor of 2 and centered at $(3,8)$. The line's image is
1) $y = 3x - 8$
2) $y = 3x - 4$
3) $y = 3x - 2$
4) $y = 3x - 1$

34 In the diagram below, BC connects points B and C on the congruent sides of isosceles triangle ADE, such that $\triangle ABC$ is isosceles with vertex angle A.

If $AB = 10$, $BD = 5$, and $DE = 12$, what is the length of BC?
1) 6
2) 7
3) 8
4) 9

35 The diameter of a basketball is approximately 9.5 inches and the diameter of a tennis ball is approximately 2.5 inches. The volume of the basketball is about how many times greater than the volume of the tennis ball?
1) 3591
2) 65
3) 55
4) 4
36. Francisco needs the three pieces of glass shown below to complete a stained glass window. The shapes, two triangles and a trapezoid, are measured in inches.

![Glass pieces](image)

Glass can be purchased in rectangular sheets that are 12 inches wide. What is the minimum length of a sheet of glass, in inches, that Francisco must purchase in order to have enough to complete the window?

1) 20
2) 25
3) 29
4) 34

37. In parallelogram $ABCD$, diagonals AC and BD intersect at E. Which statement does not prove parallelogram $ABCD$ is a rhombus?

1) $AC \cong DB$
2) $AB \cong BC$
3) $AC \perp DB$
4) AC bisects $\angle DCB$

38. Linda is designing a circular piece of stained glass with a diameter of 7 inches. She is going to sketch a square inside the circular region. To the nearest tenth of an inch, the largest possible length of a side of the square is

1) 3.5
2) 4.9
3) 5.0
4) 6.9

39. The equation of line h is $2x + y = 1$. Line m is the image of line h after a dilation of scale factor 4 with respect to the origin. What is the equation of the line m?

1) $y = -2x + 1$
2) $y = -2x + 4$
3) $y = 2x + 4$
4) $y = 2x + 1$

40. What are the coordinates of the center and the length of the radius of the circle whose equation is $x^2 + y^2 = 8x - 6y + 39$?

1) center $(-4,3)$ and radius 64
2) center $(4,-3)$ and radius 64
3) center $(-4,3)$ and radius 8
4) center $(4,-3)$ and radius 8
41 Which transformation of \(OA \) would result in an image parallel to \(OA \)?

1) a translation of two units down
2) a reflection over the x-axis
3) a reflection over the y-axis
4) a clockwise rotation of 90° about the origin

42 A circle with a radius of 5 was divided into 24 congruent sectors. The sectors were then rearranged, as shown in the diagram below.

To the nearest integer, the value of \(x \) is
1) 31
2) 16
3) 12
4) 10

43 What is an equation of a circle whose center is (1,4) and diameter is 10?

1) \(x^2 - 2x + y^2 - 8y = 8 \)
2) \(x^2 + 2x + y^2 + 8y = 8 \)
3) \(x^2 - 2x + y^2 - 8y = 83 \)
4) \(x^2 + 2x + y^2 + 8y = 83 \)

44 Which regular polygon has a minimum rotation of 45° to carry the polygon onto itself?
1) octagon
2) decagon
3) hexagon
4) pentagon

45 Line segment \(NY \) has endpoints \(N(-11,5) \) and \(Y(5,-7) \). What is the equation of the perpendicular bisector of \(NY \)?

1) \(y + 1 = \frac{4}{3}(x + 3) \)
2) \(y + 1 = -\frac{3}{4}(x + 3) \)
3) \(y - 6 = \frac{4}{3}(x - 8) \)
4) \(y - 6 = -\frac{3}{4}(x - 8) \)

46 In the diagram below, quadrilateral \(ABCD \) is inscribed in circle \(P \).

What is \(m\angle ADC \)?
1) 70°
2) 72°
3) 108°
4) 110°
47. In the diagram below, \(\triangle ABC \) has vertices \(A(4,5) \), \(B(2,1) \), and \(C(7,3) \).

What is the slope of the altitude drawn from \(A \) to \(BC \)?
1) \(\frac{2}{5} \)
2) \(\frac{3}{2} \)
3) \(-\frac{1}{2} \)
4) \(-\frac{5}{2} \)

48. What is an equation of the image of the line \(y = \frac{3}{2}x - 4 \) after a dilation of a scale factor of \(\frac{3}{4} \) centered at the origin?
1) \(y = \frac{9}{8}x - 4 \)
2) \(y = \frac{9}{8}x - 3 \)
3) \(y = \frac{3}{2}x - 4 \)
4) \(y = \frac{3}{2}x - 3 \)

49. In the diagram below, \(\triangle ABC \sim \triangle DEC \).

If \(AC = 12 \), \(DC = 7 \), \(DE = 5 \), and the perimeter of \(\triangle ABC \) is 30, what is the perimeter of \(\triangle DEC \)?
1) 12.5
2) 14.0
3) 14.8
4) 17.5

50. In right triangle \(ABC \) shown below, point \(D \) is on \(AB \) and point \(E \) is on \(CB \) such that \(AC \parallel DE \).

If \(AB = 15 \), \(BC = 12 \), and \(EC = 7 \), what is the length of \(BD \)?
1) 8.75
2) 6.25
3) 5
4) 4
51 A sequence of transformations maps rectangle $ABCD$ onto rectangle $A'B'C'D'$, as shown in the diagram below. Which sequence of transformations maps $ABCD$ onto $A'B'C'D'$ and then maps $A'B'C'D'$ onto $A''B''C''D''$?
1) a reflection followed by a rotation
2) a reflection followed by a translation
3) a translation followed by a rotation
4) a translation followed by a reflection

52 In the diagram of right triangle ABC shown below, $AB = 14$ and $AC = 9$.

What is the measure of $\angle A$, to the nearest degree?
1) 33
2) 40
3) 50
4) 57

53 In the diagram below of right triangle ABC, $AC = 8$, and $AB = 17$.

Which equation would determine the value of angle A?
1) $\sin A = \frac{8}{17}$
2) $\tan A = \frac{8}{15}$
3) $\cos A = \frac{15}{17}$
4) $\tan A = \frac{15}{8}$

54 In the diagram of equilateral triangle ABC shown below, E and F are the midpoints of AC and BC, respectively.

If $EF = 2x + 8$ and $AB = 7x - 2$, what is the perimeter of trapezoid $ABFE$?
1) 36
2) 60
3) 100
4) 120
55 From a point on the ground one-half mile from the base of a historic monument, the angle of elevation to its top is 11.87°. To the nearest foot, what is the height of the monument?
1) 543
2) 555
3) 1086
4) 1110

56 In the diagram below of circle O, chords JT and ER intersect at M.

If $EM = 8$ and $RM = 15$, the lengths of JM and TM could be
1) 12 and 9.5
2) 14 and 8.5
3) 16 and 7.5
4) 18 and 6.5

57 What are the coordinates of the center and length of the radius of the circle whose equation is $x^2 + 6x + y^2 - 4y = 23$?
1) $(3, -2)$ and 36
2) $(3, -2)$ and 6
3) $(-3, 2)$ and 36
4) $(-3, 2)$ and 6

58 Which statement about parallelograms is always true?
1) The diagonals are congruent.
2) The diagonals bisect each other.
3) The diagonals are perpendicular.
4) The diagonals bisect their respective angles.

59 Triangle ABC and triangle DEF are graphed on the set of axes below.

Which sequence of transformations maps triangle ABC onto triangle DEF?
1) a reflection over the x-axis followed by a reflection over the y-axis
2) a 180° rotation about the origin followed by a reflection over the line $y = x$
3) a 90° clockwise rotation about the origin followed by a reflection over the y-axis
4) a translation 8 units to the right and 1 unit up followed by a 90° counterclockwise rotation about the origin

60 If a rectangle is continuously rotated around one of its sides, what is the three-dimensional figure formed?
1) rectangular prism
2) cylinder
3) sphere
4) cone
61 On the set of axes below, \(\triangle ABC \) has vertices at \(A(-2,0), B(2,-4), \) and \(\triangle DEF \) has vertices at \(D(4,0), E(-4,8), F(-8,-4) \).

Which sequence of transformations will map \(\triangle ABC \) onto \(\triangle DEF \)?

1) a dilation of \(\triangle ABC \) by a scale factor of 2 centered at point \(A \)
2) a dilation of \(\triangle ABC \) by a scale factor of \(\frac{1}{2} \) centered at point \(A \)
3) a dilation of \(\triangle ABC \) by a scale factor of 2 centered at the origin, followed by a rotation of 180° about the origin
4) a dilation of \(\triangle ABC \) by a scale factor of \(\frac{1}{2} \) centered at the origin, followed by a rotation of 180° about the origin

62 Which information is not sufficient to prove that a parallelogram is a square?

1) The diagonals are both congruent and perpendicular.
2) The diagonals are congruent and one pair of adjacent sides are congruent.
3) The diagonals are perpendicular and one pair of adjacent sides are congruent.
4) The diagonals are perpendicular and one pair of adjacent sides are perpendicular.

63 Triangles \(ABC \) and \(DEF \) are drawn below.

If \(AB = 9, BC = 15, DE = 6, EF = 10 \), and \(\angle B \cong \angle E \), which statement is true?

1) \(\angle CAB \cong \angle DEF \)
2) \(\frac{AB}{CB} = \frac{FE}{DE} \)
3) \(\triangle ABC \sim \triangle DEF \)
4) \(\frac{AB}{DE} = \frac{FE}{CB} \)

64 In the diagram of right triangle \(ABC \), \(\overline{CD} \) intersects hypotenuse \(\overline{AB} \) at \(D \).

If \(AD = 4 \) and \(DB = 6 \), which length of \(\overline{AC} \) makes \(\overline{CD} \perp \overline{AB} \)?

1) \(2\sqrt{6} \)
2) \(2\sqrt{10} \)
3) \(2\sqrt{15} \)
4) \(4\sqrt{2} \)
65 In the diagram below, DB and AF intersect at point C, and AD and FBE are drawn.

If $AC = 6$, $DC = 4$, $FC = 15$, $m\angle D = 65^\circ$, and $m\angle CBE = 115^\circ$, what is the length of CB?

1) 10
2) 12
3) 17
4) 22.5

66 In the diagram below, $ABCD$ is a parallelogram, AB is extended through B to E, and CE is drawn.

If $CE \cong BE$ and $m\angle D = 112^\circ$, what is $m\angle E$?

1) 44°
2) 56°
3) 68°
4) 112°

67 Given right triangle ABC with a right angle at C, $m\angle B = 61^\circ$. Given right triangle RST with a right angle at T, $m\angle R = 29^\circ$.

Which proportion in relation to $\triangle ABC$ and $\triangle RST$ is not correct?

1) $\frac{AB}{RS} = \frac{RT}{AC}$
2) $\frac{BC}{ST} = \frac{AB}{RS}$
3) $\frac{BC}{ST} = \frac{AC}{RT}$
4) $\frac{AB}{AC} = \frac{RS}{RT}$

68 In the diagram below of parallelogram $ABCD$, $AFGB$, CF bisects $\angle DCB$, DG bisects $\angle ADC$, and CF and DG intersect at E.

If $m\angle B = 75^\circ$, then the measure of $\angle EFA$ is

1) 142.5°
2) 127.5°
3) 52.5°
4) 37.5°
69 Two right triangles must be congruent if
1) an acute angle in each triangle is congruent
2) the lengths of the hypotenuses are equal
3) the corresponding legs are congruent
4) the areas are equal

70 On the set of axes below, triangle ABC is graphed. Triangles $A'B'C'$ and $A''B''C''$, the images of triangle ABC, are graphed after a sequence of rigid motions.

Identify which sequence of rigid motions maps $\triangle ABC$ onto $\triangle A'B'C'$ and then maps $\triangle A'B'C'$ onto $\triangle A''B''C''$.
1) a rotation followed by another rotation
2) a translation followed by a reflection
3) a reflection followed by a translation
4) a reflection followed by a rotation

71 In scalene triangle ABC shown in the diagram below, $\angle C = 90^\circ$.

Which equation is always true?
1) $\sin A = \sin B$
2) $\cos A = \cos B$
3) $\cos A = \sin C$
4) $\sin A = \cos B$

72 A hemispherical water tank has an inside diameter of 10 feet. If water has a density of 62.4 pounds per cubic foot, what is the weight of the water in a full tank, to the nearest pound?
1) 16,336
2) 32,673
3) 130,690
4) 261,381

73 In the diagram below of right triangle KMI, altitude IG is drawn to hypotenuse KM.

If $KG = 9$ and $IG = 12$, the length of IM is
1) 15
2) 16
3) 20
4) 25
74 On the set of axes below, AB is dilated by a scale factor of $\frac{5}{2}$ centered at point P.

Which statement is always true?
1) $PA \cong AA'$
2) $AB \parallel A'B'$
3) $AB = A'B'$
4) $\frac{5}{2}(A'B') = AB$

75 A gallon of paint will cover approximately 450 square feet. An artist wants to paint all the outside surfaces of a cube measuring 12 feet on each edge. What is the least number of gallons of paint he must buy to paint the cube?
1) 1
2) 2
3) 3
4) 4

76 Triangle RST is graphed on the set of axes below.

How many square units are in the area of $\triangle RST$?
1) $9\sqrt{3} + 15$
2) $9\sqrt{5} + 15$
3) 45
4) 90

77 In triangle CHR, O is on HR, and D is on CR so that $\angle H \cong \angle RDO$.

If $RD = 4$, $RO = 6$, and $OH = 4$, what is the length of CD?
1) $2 \frac{2}{3}$
2) $6 \frac{2}{3}$
3) 11
4) 15
78 In the diagram of parallelogram $FRED$ shown below, ED is extended to A, and AF is drawn such that $AF \cong DF$.

![Parallelogram Diagram]

If $m\angle R = 124^\circ$, what is $m\angle AFD$?
1) 124°
2) 112°
3) 68°
4) 56°

79 Given: $\triangle AEC$, $\triangle DEF$, and $FE \perp CE$

![Triangle Diagram]

What is a correct sequence of similarity transformations that shows $\triangle AEC \sim \triangle DEF$?
1) a rotation of 180 degrees about point E followed by a horizontal translation
2) a counterclockwise rotation of 90 degrees about point E followed by a horizontal translation
3) a rotation of 180 degrees about point E followed by a dilation with a scale factor of 2 centered at point E
4) a counterclockwise rotation of 90 degrees about point E followed by a dilation with a scale factor of 2 centered at point E

80 In the diagram below, CD is the image of AB after a dilation of scale factor k with center E.

![Dilation Diagram]

Which ratio is equal to the scale factor k of the dilation?
1) $\frac{EC}{EA}$
2) $\frac{BA}{EA}$
3) $\frac{EA}{BA}$
4) $\frac{EA}{EC}$

81 The line $-3x + 4y = 8$ is transformed by a dilation centered at the origin. Which linear equation could represent its image?

1) $y = \frac{4}{3}x + 8$
2) $y = \frac{3}{4}x + 8$
3) $y = -\frac{3}{4}x - 8$
4) $y = -\frac{4}{3}x - 8$
82 In the diagram below of circle O, the area of the shaded sector LOM is 2π cm2.

If the length of NL is 6 cm, what is $m\angle N$?
1) 10º
2) 20º
3) 40º
4) 80º

83 Point M divides AB so that $AM:MB = 1:2$. If A has coordinates $(-1, -3)$ and B has coordinates $(8, 9)$, the coordinates of M are
1) $(2, 1)$
2) $\left(\frac{5}{3}, 0\right)$
3) $(5, 5)$
4) $\left(\frac{23}{3}, 8\right)$

84 The line $3y = -2x + 8$ is transformed by a dilation centered at the origin. Which linear equation could be its image?
1) $2x + 3y = 5$
2) $2x - 3y = 5$
3) $3x + 2y = 5$
4) $3x - 2y = 5$

85 In the diagram below, chords PQ and RS of circle O intersect at T.

Which relationship must always be true?
1) $RT = TQ$
2) $RT = TS$
3) $RT + TS = PT + TQ$
4) $RT \times TS = PT \times TQ$

86 A designer needs to create perfectly circular necklaces. The necklaces each need to have a radius of 10 cm. What is the largest number of necklaces that can be made from 1000 cm of wire?
1) 15
2) 16
3) 31
4) 32

87 A 15-foot ladder leans against a wall and makes an angle of 65° with the ground. What is the horizontal distance from the wall to the base of the ladder, to the nearest tenth of a foot?
1) 6.3
2) 7.0
3) 12.9
4) 13.6
88. A fish tank in the shape of a rectangular prism has dimensions of 14 inches, 16 inches, and 10 inches. The tank contains 1680 cubic inches of water. What percent of the fish tank is empty?
 1) 10
 2) 25
 3) 50
 4) 75

89. Which object is formed when right triangle RST shown below is rotated around leg RS?

```
R
  |
  |
S  T
```

 1) a pyramid with a square base
 2) an isosceles triangle
 3) a right triangle
 4) a cone

90. In ΔABC, where ∠C is a right angle, \(\cos A = \frac{\sqrt{21}}{5} \). What is \(\sin B \)?

```
<p>| |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
</table>
S   |
  |
  |
```

 1) \(\frac{\sqrt{21}}{5} \)
 2) \(\frac{\sqrt{21}}{2} \)
 3) \(\frac{2}{5} \)
 4) \(\frac{5}{\sqrt{21}} \)

91. On the set of axes below, ΔABC, altitude CG, and median CM are drawn.

```
O
  |
  |
  |
  |
C  M
  |
  |
A
  |
  |
G
  |
  |
B
  |
  |
  |
```

Which expression represents the area of ΔABC?

 1) \(\frac{(BC)(AC)}{2} \)
 2) \(\frac{(GC)(BC)}{2} \)
 3) \(\frac{(CM)(AB)}{2} \)
 4) \(\frac{(GC)(AB)}{2} \)

92. As shown in the diagram below, the angle of elevation from a point on the ground to the top of the tree is 34°.

```
34°
```

If the point is 20 feet from the base of the tree, what is the height of the tree, to the nearest tenth of a foot?

 1) 29.7
 2) 16.6
 3) 13.5
 4) 11.2
93 In the diagram shown below, \(\overline{AC} \) is tangent to circle \(O \) at \(A \) and to circle \(P \) at \(C \). \(\overline{OP} \) intersects \(\overline{AC} \) at \(B \), \(OA = 4 \), \(AB = 5 \), and \(PC = 10 \).

What is the length of \(BC \)?
1) 6.4
2) 8
3) 12.5
4) 16

94 Which sequence of transformations will map \(\triangle ABC \) onto \(\triangle A'B'C' \)?
1) reflection and translation
2) rotation and reflection
3) translation and dilation
4) dilation and rotation

95 Chelsea is sitting 8 feet from the foot of a tree. From where she is sitting, the angle of elevation of her line of sight to the top of the tree is 36\(^\circ\). If her line of sight starts 1.5 feet above ground, how tall is the tree, to the nearest foot?
1) 8
2) 7
3) 6
4) 4

96 A quadrilateral has vertices with coordinates \((-3,1), (0,3), (5,2), \) and \((-1,-2)\). Which type of quadrilateral is this?
1) rhombus
2) rectangle
3) square
4) trapezoid

97 Which figure can have the same cross section as a sphere?
1)
2)
3)
4)
98. Which three-dimensional figure will result when a rectangle 6 inches long and 5 inches wide is continuously rotated about the longer side?
 1) a rectangular prism with a length of 6 inches, width of 6 inches, and height of 5 inches
 2) a rectangular prism with a length of 6 inches, width of 5 inches, and height of 5 inches
 3) a cylinder with a radius of 5 inches and a height of 6 inches
 4) a cylinder with a radius of 6 inches and a height of 5 inches

99. The cross section of a regular pyramid contains the altitude of the pyramid. The shape of this cross section is a
 1) circle
 2) square
 3) triangle
 4) rectangle

100. Triangles \(\triangle JOE \) and \(\triangle SAM \) are drawn such that \(\angle E \cong \angle M \) and \(\overline{EJ} \cong \overline{MS} \). Which mapping would \textit{not} always lead to \(\triangle JOE \cong \triangle SAM \)?
 1) \(\angle J \) maps onto \(\angle S \)
 2) \(\angle O \) maps onto \(\angle A \)
 3) \(\overline{EO} \) maps onto \(\overline{MA} \)
 4) \(\overline{JO} \) maps onto \(\overline{SA} \)

101. A shipping container is in the shape of a right rectangular prism with a length of 12 feet, a width of 8.5 feet, and a height of 4 feet. The container is completely filled with contents that weigh, on average, 0.25 pound per cubic foot. What is the weight, in pounds, of the contents in the container?
 1) 1,632
 2) 408
 3) 102
 4) 92

102. On the set of axes below, rectangle \(\text{ABCD} \) can be proven congruent to rectangle \(\text{KLMN} \) using which transformation?

103. In the diagram of \(\triangle ABC \), points \(D \) and \(E \) are on \(AB \) and \(CB \), respectively, such that \(AC \parallel DE \).

If \(AD = 24 \), \(DB = 12 \), and \(DE = 4 \), what is the length of \(AC \)?
 1) 8
 2) 12
 3) 16
 4) 72
104 Steve drew line segments $ABCD$, EFG, BF, and CF as shown in the diagram below. Scalene $\triangle BFC$ is formed.

![Diagram of line segments](image)

Which statement will allow Steve to prove $ABCD \parallel EFG$?
1) $\angle CFG \cong \angle FCB$
2) $\angle ABF \cong \angle BFC$
3) $\angle EFB \cong \angle CFB$
4) $\angle CBF \cong \angle GFC$

105 A regular pentagon is shown in the diagram below.

![Diagram of regular pentagon](image)

If the pentagon is rotated clockwise around its center, the minimum number of degrees it must be rotated to carry the pentagon onto itself is
1) 54°
2) 72°
3) 108°
4) 360°

106 Square $MATH$ has a side length of 7 inches. Which three-dimensional object will be formed by continuously rotating square $MATH$ around side AT?
1) a right cone with a base diameter of 7 inches
2) a right cylinder with a diameter of 7 inches
3) a right cone with a base radius of 7 inches
4) a right cylinder with a radius of 7 inches

107 In the diagram below of circle O, \overline{OB} and \overline{OC} are radii, and chords AB, BC, and AC are drawn.

![Diagram of circle with chords](image)

Which statement must always be true?
1) $\angle BAC \cong \angle BOC$
2) $m\angle BAC = \frac{1}{2} m\angle BOC$
3) $\triangle BAC$ and $\triangle BOC$ are isosceles.
4) The area of $\triangle BAC$ is twice the area of $\triangle BOC$.

108 What is the volume, in cubic centimeters, of a right square pyramid with base edges that are 64 cm long and a slant height of 40 cm?
1) 8192.0
2) 13,653.3
3) 32,768.0
4) 54,613.3

109 After a dilation with center $(0,0)$, the image of \overline{DB} is $\overline{D'B'}$. If $DB = 4.5$ and $D'B' = 18$, the scale factor of this dilation is
1) $\frac{1}{5}$
2) 5
3) $\frac{1}{4}$
4) 4
110. What are the coordinates of the center and the length of the radius of the circle represented by the equation \(x^2 + y^2 - 4x + 8y + 11 = 0\)?
1) center (2, -4) and radius 3
2) center (-2, 4) and radius 3
3) center (2, -4) and radius 9
4) center (-2, 4) and radius 9

111. The ratio of similarity of \(\triangle BOY\) to \(\triangle GRL\) is 1:2. If \(BO = x + 3\) and \(GR = 3x - 1\), then the length of \(GR\) is
1) 5
2) 7
3) 10
4) 20

112. The density of the American white oak tree is 752 kilograms per cubic meter. If the trunk of an American white oak tree has a circumference of 4.5 meters and the height of the trunk is 8 meters, what is the approximate number of kilograms of the trunk?
1) 13
2) 9694
3) 13,536
4) 30,456

113. Which equation represents a line parallel to the line whose equation is \(-2x + 3y = -4\) and passes through the point (1,3)?
1) \(y - 3 = -\frac{3}{2}(x - 1)\)
2) \(y - 3 = \frac{2}{3}(x - 1)\)
3) \(y + 3 = -\frac{3}{2}(x + 1)\)
4) \(y + 3 = \frac{2}{3}(x + 1)\)

114. In rhombus \(TIGE\), diagonals \(\overline{TG}\) and \(\overline{IE}\) intersect at \(R\). The perimeter of \(TIGE\) is 68, and \(TG = 16\).

What is the length of diagonal \(\overline{IE}\)?
1) 15
2) 30
3) 34
4) 52

115. As shown in the diagram below, the radius of a cone is 2.5 cm and its slant height is 6.5 cm.
How many cubic centimeters are in the volume of the cone?
1) \(12.5\pi\)
2) \(13.5\pi\)
3) \(30.0\pi\)
4) \(37.5\pi\)
116 A countertop for a kitchen is modeled with the dimensions shown below. An 18-inch by 21-inch rectangle will be removed for the installation of the sink.

What is the area of the top of the installed countertop, to the nearest square foot?
1) 26
2) 23
3) 22
4) 19

117 A tent is in the shape of a right pyramid with a square floor. The square floor has side lengths of 8 feet. If the height of the tent at its center is 6 feet, what is the volume of the tent, in cubic feet?
1) 48
2) 128
3) 192
4) 384

118 A three-inch line segment is dilated by a scale factor of 6 and centered at its midpoint. What is the length of its image?
1) 9 inches
2) 2 inches
3) 15 inches
4) 18 inches

119 Which transformation carries the parallelogram below onto itself?
1) a reflection over \(y = x \)
2) a reflection over \(y = -x \)
3) a rotation of 90° counterclockwise about the origin
4) a rotation of 180° counterclockwise about the origin

120 If the altitudes of a triangle meet at one of the triangle’s vertices, then the triangle is
1) a right triangle
2) an acute triangle
3) an obtuse triangle
4) an equilateral triangle

121 Segment \(CD \) is the perpendicular bisector of \(AB \) at \(E \). Which pair of segments does not have to be congruent?
1) \(\overline{AD}, \overline{BD} \)
2) \(\overline{AC}, \overline{BC} \)
3) \(\overline{AE}, \overline{BE} \)
4) \(\overline{DE}, \overline{CE} \)
122 William is drawing pictures of cross sections of the right circular cone below.

Which drawing can *not* be a cross section of a cone?

1)

2)

3)

4)

123 The Great Pyramid of Giza was constructed as a regular pyramid with a square base. It was built with an approximate volume of 2,592,276 cubic meters and a height of 146.5 meters. What was the length of one side of its base, to the *nearest meter*?

1) 73
2) 77
3) 133
4) 230

124 A triangle is dilated by a scale factor of 3 with the center of dilation at the origin. Which statement is true?

1) The area of the image is nine times the area of the original triangle.
2) The perimeter of the image is nine times the perimeter of the original triangle.
3) The slope of any side of the image is three times the slope of the corresponding side of the original triangle.
4) The measure of each angle in the image is three times the measure of the corresponding angle of the original triangle.

125 The image of $\triangle ABC$ after a dilation of scale factor k centered at point A is $\triangle ADE$, as shown in the diagram below.

Which statement is always true?

1) $2AB = AD$
2) $AD \perp DE$
3) $AC = CE$
4) $BC \parallel DE$
126 In the diagram below of triangle ABC, AC is extended through point C to point D, and BE is drawn to AC.

Which equation is always true?
1) $\angle 1 = \angle 3 + \angle 2$
2) $\angle 5 = \angle 3 - \angle 2$
3) $\angle 6 = \angle 3 - \angle 2$
4) $\angle 7 = \angle 3 + \angle 2$

127 In the diagram below, FE bisects AC at B, and GE bisects BD at C.

Which statement is always true?
1) $AB \cong DC$
2) $FB \cong EB$
3) BD bisects GE at C.
4) AC bisects FE at B.

128 Using the information given below, which set of triangles can \textit{not} be proven similar?

129 If $x^2 + 4x + y^2 - 6y - 12 = 0$ is the equation of a circle, the length of the radius is
1) 25
2) 16
3) 5
4) 4
130 After a dilation centered at the origin, the image of \(\overline{CD} \) is \(\overline{C'D'} \). If the coordinates of the endpoints of these segments are \(C(6, -4), D(2, -8), C'(9, -6), \) and \(D'(3, -12) \), the scale factor of the dilation is

1) \(\frac{3}{2} \)
2) \(\frac{2}{3} \)
3) \(3 \)
4) \(\frac{1}{3} \)

131 The vertices of \(\triangle JKL \) have coordinates \(J(5, 1), K(-2, -3), \) and \(L(-4, 1) \). Under which transformation is the image \(\triangle J'K'L' \) not congruent to \(\triangle JKL \)?

1) a translation of two units to the right and two units down
2) a counterclockwise rotation of 180 degrees around the origin
3) a reflection over the \(x \)-axis
4) a dilation with a scale factor of 2 and centered at the origin

132 What is the area of a sector of a circle with a radius of 8 inches and formed by a central angle that measures 60°?

1) \(\frac{8\pi}{3} \)
2) \(\frac{16\pi}{3} \)
3) \(\frac{32\pi}{3} \)
4) \(\frac{64\pi}{3} \)

133 In the diagram below, a square is graphed in the coordinate plane.

A reflection over which line does not carry the square onto itself?

1) \(x = 5 \)
2) \(y = 2 \)
3) \(y = x \)
4) \(x + y = 4 \)

134 Which point shown in the graph below is the image of point \(P \) after a counterclockwise rotation of 90° about the origin?

1) \(A \)
2) \(B \)
3) \(C \)
4) \(D \)
135 A standard-size golf ball has a diameter of 1.680 inches. The material used to make the golf ball weighs 0.6523 ounce per cubic inch. What is the weight, to the nearest hundredth of an ounce, of one golf ball?
1) 1.10
2) 1.62
3) 2.48
4) 3.81

136 In the diagram below, \(\triangle ABC \sim \triangle ADE \).

Which measurements are justified by this similarity?
1) \(AD = 3, AB = 6, AE = 4, \) and \(AC = 12 \)
2) \(AD = 5, AB = 8, AE = 7, \) and \(AC = 10 \)
3) \(AD = 3, AB = 9, AE = 5, \) and \(AC = 10 \)
4) \(AD = 2, AB = 6, AE = 5, \) and \(AC = 15 \)

137 If \(\triangle A'B'C' \) is the image of \(\triangle ABC \), under which transformation will the triangles not be congruent?
1) reflection over the x-axis
2) translation to the left 5 and down 4
3) dilation centered at the origin with scale factor 2
4) rotation of 270° counterclockwise about the origin

138 In the diagram below of right triangle \(\triangle ABC \), altitude \(CD \) intersects hypotenuse \(AB \) at \(D \).

Which equation is always true?
1) \(\frac{AD}{AC} = \frac{CD}{BC} \)
2) \(\frac{AD}{CD} = \frac{BD}{CD} \)
3) \(\frac{AC}{CD} = \frac{BC}{CD} \)
4) \(\frac{AD}{AC} = \frac{AC}{BD} \)

139 In \(\triangle SCU \) shown below, points \(T \) and \(O \) are on \(SU \) and \(CU \), respectively. Segment \(OT \) is drawn so that \(\angle C \cong \angle OTU \).

If \(TU = 4, OU = 5, \) and \(OC = 7 \), what is the length of \(ST \)?
1) 5.6
2) 8.75
3) 11
4) 15
140 In circle O, diameter AB, chord BC, and radius OC are drawn, and the measure of arc BC is 108°.

Some students wrote these formulas to find the area of sector COB:

- Amy $\frac{3}{10} \cdot \pi \cdot (BC)^2$
- Beth $\frac{108}{360} \cdot \pi \cdot (OC)^2$
- Carl $\frac{3}{10} \cdot \pi \cdot \left(\frac{1}{2} AB\right)^2$
- Dex $\frac{108}{360} \cdot \pi \cdot \left(\frac{1}{2} AB\right)^2$

Which students wrote correct formulas?
1) Amy and Dex
2) Beth and Carl
3) Carl and Amy
4) Dex and Beth

141 In the diagram below, $m\angle BDC = 100^\circ$, $m\angle A = 50^\circ$, and $m\angle DBC = 30^\circ$.

Which statement is true?
1) $\triangle ABD$ is obtuse.
2) $\triangle ABC$ is isosceles.
3) $m\angle ABD = 80^\circ$
4) $\triangle ABD$ is scalene.

142 Line segment EA is the perpendicular bisector of ZT, and ZE and TE are drawn.

Which conclusion can not be proven?
1) EA bisects angle ZET.
2) Triangle EZT is equilateral.
3) EA is a median of triangle EZT.
4) Angle Z is congruent to angle T.

143 In right triangle RST, altitude TV is drawn to hypotenuse RS. If $RV = 12$ and $RT = 18$, what is the length of SV?
1) $6\sqrt{5}$
2) 15
3) $6\sqrt{6}$
4) 27

144 Tennis balls are sold in cylindrical cans with the balls stacked one on top of the other. A tennis ball has a diameter of 6.7 cm. To the nearest cubic centimeter, what is the minimum volume of the can that holds a stack of 4 tennis balls?
1) 236
2) 282
3) 564
4) 945
145 In the diagram below, $\triangle ABC \sim \triangle DEF$.

If $AB = 6$ and $AC = 8$, which statement will justify similarity by SAS?

1) $DE = 9$, $DF = 12$, and $\angle A \cong \angle D$
2) $DE = 8$, $DF = 10$, and $\angle A \cong \angle D$
3) $DE = 36$, $DF = 64$, and $\angle C \cong \angle F$
4) $DE = 15$, $DF = 20$, and $\angle C \cong \angle F$

146 In the diagram below, CD is the altitude drawn to the hypotenuse AB of right triangle ABC.

Which lengths would not produce an altitude that measures $6\sqrt{2}$?

1) $AD = 2$ and $DB = 36$
2) $AD = 3$ and $AB = 24$
3) $AD = 6$ and $DB = 12$
4) $AD = 8$ and $AB = 17$

147 The expression $\sin 57^\circ$ is equal to

1) $\tan 33^\circ$
2) $\cos 33^\circ$
3) $\tan 57^\circ$
4) $\cos 57^\circ$

148 Which statement is sufficient evidence that $\triangle DEF$ is congruent to $\triangle ABC$?

1) $AB = DE$ and $BC = EF$
2) $\angle D \cong \angle A$, $\angle B \cong \angle E$, $\angle C \cong \angle F$
3) There is a sequence of rigid motions that maps \overline{AB} onto \overline{DE}, \overline{BC} onto \overline{EF}, and \overline{AC} onto \overline{DF}.
4) There is a sequence of rigid motions that maps point A onto point D, \overline{AB} onto \overline{DE}, and $\angle B$ onto $\angle E$.

149 What is the volume of a hemisphere that has a diameter of 12.6 cm, to the nearest tenth of a cubic centimeter?

1) 523.7
2) 1047.4
3) 4189.6
4) 8379.2

150 In rhombus $VENU$, diagonals \overline{VN} and \overline{EU} intersect at S. If $VN = 12$ and $EU = 16$, what is the perimeter of the rhombus?

1) 80
2) 40
3) 20
4) 10
151 Which expression is always equivalent to \(\sin x \) when \(0^\circ < x < 90^\circ \)?
1) \(\cos(90^\circ - x) \)
2) \(\cos(45^\circ - x) \)
3) \(\cos(2x) \)
4) \(\cos x \)

152 The area of a sector of a circle with a radius measuring 15 cm is \(75\pi \) cm\(^2\). What is the measure of the central angle that forms the sector?
1) 72°
2) 120°
3) 144°
4) 180°

153 Given: \(\triangle ABE \) and \(\triangle CBD \) shown in the diagram below with \(DB \cong BE \)

Which statement is needed to prove \(\triangle ABE \cong \triangle CBD \) using only SAS \(\cong \) SAS?
1) \(\angle CDB \cong \angle AEB \)
2) \(\angle AFD \cong \angle EFC \)
3) \(AD \cong CE \)
4) \(AE \cong CD \)

154 A hemispherical tank is filled with water and has a diameter of 10 feet. If water weighs 62.4 pounds per cubic foot, what is the total weight of the water in a full tank, to the nearest pound?
1) 16,336
2) 32,673
3) 130,690
4) 261,381

155 The center of circle \(Q \) has coordinates \((3,-2)\). If circle \(Q \) passes through \(R(7,1) \), what is the length of its diameter?
1) 50
2) 25
3) 10
4) 5

156 In the diagram below, \(BC \) is the diameter of circle \(A \).

Point \(D \), which is unique from points \(B \) and \(C \), is plotted on circle \(A \). Which statement must always be true?
1) \(\triangle BCD \) is a right triangle.
2) \(\triangle BCD \) is an isosceles triangle.
3) \(\triangle BAD \) and \(\triangle CBD \) are similar triangles.
4) \(\triangle BAD \) and \(\triangle CAD \) are congruent triangles.
157 In the diagram of quadrilateral $NAVY$ below, $m\angle YNA = 30^\circ$, $m\angle YAN = 38^\circ$, $m\angle AVY = 94^\circ$, and $m\angle VAY = 46^\circ$.

Which segment has the shortest length?
1) AY
2) NY
3) VA
4) VY

158 If the line represented by $y = -\frac{1}{4}x - 2$ is dilated by a scale factor of 4 centered at the origin, which statement about the image is true?
1) The slope is $-\frac{1}{4}$ and the y-intercept is -8.
2) The slope is $\frac{1}{4}$ and the y-intercept is -2.
3) The slope is -1 and the y-intercept is -8.
4) The slope is -1 and the y-intercept is -2.

159 The coordinates of the vertices of parallelogram $CDEH$ are $C(-5,5)$, $D(2,5)$, $E(-1,-1)$, and $H(-8,-1)$. What are the coordinates of P, the point of intersection of diagonals CE and DH?
1) $(-2,3)$
2) $(-2,2)$
3) $(-3,2)$
4) $(-3,-2)$

160 In the diagram below, $\triangle ABC$ with sides 13, 15, and 16, is mapped onto $\triangle DEF$ after a clockwise rotation of 90° about point P.

If $DE = 2x - 1$, what is the value of x?
1) 7
2) 7.5
3) 8
4) 8.5

161 Molly wishes to make a lawn ornament in the form of a solid sphere. The clay being used to make the sphere weighs .075 pound per cubic inch. If the sphere's radius is 4 inches, what is the weight of the sphere, to the nearest pound?
1) 34
2) 20
3) 15
4) 4

162 What are the coordinates of the point on the directed line segment from $K(-5,-4)$ to $L(5,1)$ that partitions the segment into a ratio of 3 to 2?
1) $(-3,-3)$
2) $(-1,-2)$
3) $\left(0, \frac{3}{2}\right)$
4) $(1,-1)$
163. Triangle FGH is inscribed in circle O, the length of radius OH is 6, and $FH \cong OG$.

![Diagram of circle with triangle](image)

What is the area of the sector formed by angle FOH?

- 1) 2π
- 2) $\frac{3}{2}\pi$
- 3) 6π
- 4) 24π

164. The image of $\triangle ABC$ after a rotation of 90° clockwise about the origin is $\triangle DEF$, as shown below.

![Diagram of rotated triangle](image)

Which statement is true?

- 1) $BC \cong DE$
- 2) $AB \cong DF$
- 3) $\angle C \cong \angle E$
- 4) $\angle A \cong \angle D$

165. A student has a rectangular postcard that he folds in half lengthwise. Next, he rotates it continuously about the folded edge. Which three-dimensional object below is generated by this rotation?

![List of 3D objects](image)

- 1)
- 2)
- 3)
- 4)
166 In the diagram of circle \(A \) shown below, chords \(CD \) and \(EF \) intersect at \(G \), and chords \(CE \) and \(FD \) are drawn.

Which statement is not always true?
1) \(CG \cong FG \)
2) \(\angle CEG \cong \angle FDG \)
3) \(\frac{CE}{EG} = \frac{FD}{DG} \)
4) \(\triangle CEG \sim \triangle FDG \)

167 Point \(P \) is on the directed line segment from point \(X(-6,-2) \) to point \(Y(6,7) \) and divides the segment in the ratio 1:5. What are the coordinates of point \(P \)?
1) \(\left(4,\frac{1}{2}\right) \)
2) \(\left(-\frac{1}{2},-4\right) \)
3) \(\left(-4\frac{1}{2},0\right) \)
4) \(\left(-4,-\frac{1}{2}\right) \)

168 The graph below shows \(AB \), which is a chord of circle \(O \). The coordinates of the endpoints of \(AB \) are \(A(3,3) \) and \(B(3,-7) \). The distance from the midpoint of \(AB \) to the center of circle \(O \) is 2 units.

What could be a correct equation for circle \(O \)?
1) \((x-1)^2 + (y+2)^2 = 29 \)
2) \((x+5)^2 + (y-2)^2 = 29 \)
3) \((x-1)^2 + (y-2)^2 = 25 \)
4) \((x-5)^2 + (y+2)^2 = 25 \)

169 What is an equation of a line that is perpendicular to the line whose equation is \(2y + 3x = 1 \)?
1) \(y = \frac{2}{3}x + \frac{5}{2} \)
2) \(y = \frac{3}{2}x + 2 \)
3) \(y = -\frac{2}{3}x + 1 \)
4) \(y = -\frac{3}{2}x + \frac{1}{2} \)
170 Quadrilateral $ABCD$ is graphed on the set of axes below.

When $ABCD$ is rotated 90° in a counterclockwise direction about the origin, its image is quadrilateral $A'B'C'D'$. Is distance preserved under this rotation, and which coordinates are correct for the given vertex?
1) no and $C'(1,2)$
2) no and $D'(2,4)$
3) yes and $A'(6,2)$
4) yes and $B'(-3,4)$

171 The diagonals of rhombus $TEAM$ intersect at $P(2,1)$. If the equation of the line that contains diagonal TA is $y = -x + 3$, what is the equation of a line that contains diagonal EM?
1) $y = x - 1$
2) $y = x - 3$
3) $y = -x - 1$
4) $y = -x - 3$

172 A quadrilateral must be a parallelogram if
1) one pair of sides is parallel and one pair of angles is congruent
2) one pair of sides is congruent and one pair of angles is congruent
3) one pair of sides is both parallel and congruent
4) the diagonals are congruent

173 An equilateral triangle has sides of length 20. To the nearest tenth, what is the height of the equilateral triangle?
1) 10.0
2) 11.5
3) 17.3
4) 23.1

174 The equation of a circle is $x^2 + y^2 + 6y = 7$. What are the coordinates of the center and the length of the radius of the circle?
1) center $(0,3)$ and radius 4
2) center $(0,-3)$ and radius 4
3) center $(0,3)$ and radius 16
4) center $(0,-3)$ and radius 16

175 A vendor is using an 8-ft by 8-ft tent for a craft fair. The legs of the tent are 9 ft tall and the top forms a square pyramid with a height of 3 ft.

What is the volume, in cubic feet, of space the tent occupies?
1) 256
2) 640
3) 672
4) 768
176 The endpoints of one side of a regular pentagon are \((-1,4)\) and \((2,3)\). What is the perimeter of the pentagon?
1) \(\sqrt{10}\)
2) \(5\sqrt{10}\)
3) \(5\sqrt{2}\)
4) \(25\sqrt{2}\)

177 Quadrilateral \(ABCD\) has diagonals \(\overline{AC}\) and \(\overline{BD}\). Which information is not sufficient to prove \(ABCD\) is a parallelogram?
1) \(\overline{AC}\) and \(\overline{BD}\) bisect each other.
2) \(\overline{AB} \cong \overline{CD}\) and \(\overline{BC} \cong \overline{AD}\)
3) \(\overline{AB} \cong \overline{CD}\) and \(\overline{AB} \parallel \overline{CD}\)
4) \(\overline{AB} \cong \overline{CD}\) and \(\overline{BC} \parallel \overline{AD}\)

179 In the diagram below of circle \(O\), points \(K, A, T, I,\) and \(E\) are on the circle, \(\triangle KAE\) and \(\triangle ITE\) are drawn, \(\overline{KE} \cong \overline{EI}\), and \(\angle EKA \cong \angle EIT\).

Which statement about \(\triangle KAE\) and \(\triangle ITE\) is always true?
1) They are neither congruent nor similar.
2) They are similar but not congruent.
3) They are right triangles.
4) They are congruent.

178 In the diagram of \(\triangle ADC\) below, \(\overline{EB} \parallel \overline{DC}\), \(AE = 9\), \(ED = 5\), and \(AB = 9.2\).

What is the length of \(\overline{AC}\), to the nearest tenth?
1) 5.1
2) 5.2
3) 14.3
4) 14.4

180 If an equilateral triangle is continuously rotated around one of its medians, which 3-dimensional object is generated?
1) cone
2) pyramid
3) prism
4) sphere

181 If \(\triangle ABC\) is dilated by a scale factor of 3, which statement is true of the image \(\triangle A'B'C'\)?
1) \(3A'B' = AB\)
2) \(B'C' = 3BC\)
3) \(m\angle A' = 3(m\angle A)\)
4) \(3(m\angle C') = m\angle C\)
182. An equation of a line perpendicular to the line represented by the equation \(y = -\frac{1}{2}x - 5 \) and passing through \((6, -4)\) is

1) \(y = -\frac{1}{2}x + 4 \)
2) \(y = -\frac{1}{2}x - 1 \)
3) \(y = 2x + 14 \)
4) \(y = 2x - 16 \)

183. In \(\triangle ABC \), the complement of \(\angle B \) is \(\angle A \). Which statement is always true?

1) \(\tan \angle A = \tan \angle B \)
2) \(\sin \angle A = \sin \angle B \)
3) \(\cos \angle A = \tan \angle B \)
4) \(\sin \angle A = \cos \angle B \)

184. A rhombus is graphed on the set of axes below.

Which transformation would carry the rhombus onto itself?

1) \(180^\circ \) rotation counterclockwise about the origin
2) reflection over the line \(y = \frac{1}{2}x + 1 \)
3) reflection over the line \(y = 0 \)
4) reflection over the line \(x = 0 \)

185. The line \(y = 2x - 4 \) is dilated by a scale factor of \(\frac{3}{2} \) and centered at the origin. Which equation represents the image of the line after the dilation?

1) \(y = 2x - 4 \)
2) \(y = 2x - 6 \)
3) \(y = 3x - 4 \)
4) \(y = 3x - 6 \)

186. A 20-foot support post leans against a wall, making a 70° angle with the ground. To the nearest tenth of a foot, how far up the wall will the support post reach?

1) 6.8
2) 6.9
3) 18.7
4) 18.8

187. In \(\triangle ABC \) shown below, \(\angle ACB \) is a right angle, \(E \) is a point on \(AC \), and \(ED \) is drawn perpendicular to hypotenuse \(AB \).

If \(AB = 9 \), \(BC = 6 \), and \(DE = 4 \), what is the length of \(AE \)?

1) 5
2) 6
3) 7
4) 8
The table below shows the population and land area, in square miles, of four counties in New York State at the turn of the century.

<table>
<thead>
<tr>
<th>County</th>
<th>2000 Census Population</th>
<th>2000 Land Area (mi²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Broome</td>
<td>200,536</td>
<td>706.82</td>
</tr>
<tr>
<td>Dutchess</td>
<td>280,150</td>
<td>801.59</td>
</tr>
<tr>
<td>Niagara</td>
<td>219,846</td>
<td>522.95</td>
</tr>
<tr>
<td>Saratoga</td>
<td>200,635</td>
<td>811.84</td>
</tr>
</tbody>
</table>

Which county had the greatest population density?
1) Broome
2) Dutchess
3) Niagara
4) Saratoga

Which equation represents a line that is perpendicular to the line represented by $2x - y = 7$?
1) $y = -\frac{1}{2}x + 6$
2) $y = \frac{1}{2}x + 6$
3) $y = -2x + 6$
4) $y = 2x + 6$

A company is creating an object from a wooden cube with an edge length of 8.5 cm. A right circular cone with a diameter of 8 cm and an altitude of 8 cm will be cut out of the cube. Which expression represents the volume of the remaining wood?
1) $(8.5)^3 - \pi(8)^2(8)$
2) $(8.5)^3 - \pi(4)^2(8)$
3) $(8.5)^3 - \frac{1}{3}\pi(8)^2(8)$
4) $(8.5)^3 - \frac{1}{3}\pi(4)^2(8)$

In $\triangle RST$ shown below, altitude SU is drawn to RT at U.

If $SU = h$, $UT = 12$, and $RT = 42$, which value of h will make $\triangle RST$ a right triangle with $\angle RST$ as a right angle?
1) $6\sqrt{3}$
2) $6\sqrt{10}$
3) $6\sqrt{14}$
4) $6\sqrt{35}$
192 In the diagram below, which single transformation was used to map triangle A onto triangle B?

1) line reflection
2) rotation
3) dilation
4) translation

193 Circle O with a radius of 9 is drawn below. The measure of central angle AOC is 120°.

What is the area of the shaded sector of circle O?

1) 6π
2) 12π
3) 27π
4) 54π

194 Triangles ABC and RST are graphed on the set of axes below.

Which sequence of rigid motions will prove $\triangle ABC \cong \triangle RST$?

1) a line reflection over $y = x$
2) a rotation of 180° centered at $(1,0)$
3) a line reflection over the x-axis followed by a translation of 6 units right
4) a line reflection over the x-axis followed by a line reflection over $y = 1$

195 The coordinates of the endpoints of QS are $Q(-9,8)$ and $S(9,-4)$. Point R is on QS such that $QR:RS$ is in the ratio of 1:2. What are the coordinates of point R?

1) $(0,2)$
2) $(3,0)$
3) $(-3,4)$
4) $(-6,6)$

196 A parallelogram must be a rectangle when its

1) diagonals are perpendicular
2) diagonals are congruent
3) opposite sides are parallel
4) opposite sides are congruent
197 The equation of a circle is \(x^2 + y^2 - 12y + 20 = 0\). What are the coordinates of the center and the length of the radius of the circle?

1) center (0,6) and radius 4
2) center (0,−6) and radius 4
3) center (0,6) and radius 16
4) center (0,−6) and radius 16

198 Kirstie is testing values that would make triangle \(KLM\) a right triangle when \(LN\) is an altitude, and \(KM = 16\), as shown below.

Which lengths would make triangle \(KLM\) a right triangle?

1) \(LM = 13\) and \(KN = 6\)
2) \(LM = 12\) and \(NM = 9\)
3) \(KL = 11\) and \(KN = 7\)
4) \(LN = 8\) and \(NM = 10\)

199 Which rotation about its center will carry a regular decagon onto itself?

1) \(54^\circ\)
2) \(162^\circ\)
3) \(198^\circ\)
4) \(252^\circ\)

200 The vertices of \(\triangle PQR\) have coordinates \(P(2,3),\) \(Q(3,8),\) and \(R(7,3)\). Under which transformation of \(\triangle PQR\) are distance and angle measure preserved?

1) \((x,y) \rightarrow (2x,3y)\)
2) \((x,y) \rightarrow (x + 2,3y)\)
3) \((x,y) \rightarrow (2x,y + 3)\)
4) \((x,y) \rightarrow (x + 2,y + 3)\)

201 The graph below shows two congruent triangles, \(ABC\) and \(A'B'C'\).

Which rigid motion would map \(\triangle ABC\) onto \(\triangle A'B'C'\)?

1) a rotation of 90 degrees counterclockwise about the origin
2) a translation of three units to the left and three units up
3) a rotation of 180 degrees about the origin
4) a reflection over the line \(y = x\)
202 In triangle SRK below, medians SC, KE, and RL intersect at M.

Which statement must always be true?
1) $3(MC) = SC$
2) $MC = \frac{1}{3}(SM)$
3) $RM = 2MC$
4) $SM = KM$

203 In the figure shown below, quadrilateral $TAEO$ is circumscribed around circle D. The midpoint of TA is R, and $HO \cong PE$.

If $AP = 10$ and $EO = 12$, what is the perimeter of quadrilateral $TAEO$?
1) 56
2) 64
3) 72
4) 76

204 A right cylinder is cut perpendicular to its base. The shape of the cross section is a
1) circle
2) cylinder
3) rectangle
4) triangular prism

205 After a counterclockwise rotation about point X, scalene triangle ABC maps onto $\triangle RST$, as shown in the diagram below.

Which statement must be true?
1) $\angle A \cong \angle R$
2) $\angle A \cong \angle S$
3) $CB \cong TR$
4) $CA \cong TS$

206 Which transformation would not carry a square onto itself?
1) a reflection over one of its diagonals
2) a 90° rotation clockwise about its center
3) a 180° rotation about one of its vertices
4) a reflection over the perpendicular bisector of one side
207 The equation of a circle is \(x^2 + y^2 - 6x + 2y = 6 \).
What are the coordinates of the center and the length of the radius of the circle?
1) center \((-3, 1)\) and radius 4
2) center \((3, -1)\) and radius 4
3) center \((-3, 1)\) and radius 16
4) center \((3, -1)\) and radius 16

208 What is an equation of circle O shown in the graph below?

1) \(x^2 + 10x + y^2 + 4y = -13\)
2) \(x^2 - 10x + y^2 - 4y = -13\)
3) \(x^2 + 10x + y^2 + 4y = -25\)
4) \(x^2 - 10x + y^2 - 4y = -25\)

209 Triangle \(ABC\), with vertices at \(A(0,0)\), \(B(3,5)\), and \(C(0,5)\), is graphed on the set of axes shown below.

210 Line segment \(RW\) has endpoints \(R(-4,5)\) and \(W(6,20)\). Point \(P\) is on \(RW\) such that \(RP:PW\) is 2:3. What are the coordinates of point \(P\)?
1) \((2,9)\)
2) \((0,11)\)
3) \((2,14)\)
4) \((10,2)\)
211 On the set of axes below, the vertices of \(\triangle PQR \) have coordinates \(P(-6,7) \), \(Q(2,1) \), and \(R(-1,-3) \).

What is the area of \(\triangle PQR \)?
1) 10
2) 20
3) 25
4) 50

212 Rhombus \(\text{STAR} \) has vertices \(S(-1,2) \), \(T(2,3) \), \(A(3,0) \), and \(R(0,-1) \). What is the perimeter of rhombus \(\text{STAR} \)?
1) \(\sqrt{34} \)
2) \(4\sqrt{34} \)
3) \(\sqrt{10} \)
4) \(4\sqrt{10} \)

213 The line represented by the equation \(4y = 3x + 7 \) is transformed by a dilation centered at the origin. Which linear equation could represent its image?
1) \(3x - 4y = 9 \)
2) \(3x + 4y = 9 \)
3) \(4x - 3y = 9 \)
4) \(4x + 3y = 9 \)

214 In the diagram below of circle \(O \), \(GO = 8 \) and \(\angle GOJ = 60^\circ \).

What is the area, in terms of \(\pi \), of the shaded region?
1) \(\frac{4\pi}{3} \)
2) \(\frac{20\pi}{3} \)
3) \(\frac{32\pi}{3} \)
4) \(\frac{160\pi}{3} \)

215 Given the right triangle in the diagram below, what is the value of \(x \), to the nearest foot?

1) 11
2) 17
3) 18
4) 22
216 In the diagram below, DE divides AB and AC proportionally, $m\angle C = 26^\circ$, $m\angle A = 82^\circ$, and DF bisects $\angle BDE$.

![Diagram](image)

The measure of angle DFB is
1) 36°
2) 54°
3) 72°
4) 82°

217 Given $\triangle MRO$ shown below, with trapezoid $PTRO$, $MR = 9$, $MP = 2$, and $PO = 4$.

![Diagram](image)

What is the length of TR?
1) 4.5
2) 5
3) 3
4) 6

218 Given square $RSTV$, where $RS = 9$ cm. If square $RSTV$ is dilated by a scale factor of 3 about a given center, what is the perimeter, in centimeters, of the image of $RSTV$ after the dilation?
1) 12
2) 27
3) 36
4) 108

219 The coordinates of the endpoints of directed line segment ABC are $A(-8,7)$ and $C(7,-13)$. If $AB:BC = 3:2$, the coordinates of B are
1) $(1,-5)$
2) $(-2,-1)$
3) $(-3,0)$
4) $(3,-6)$

220 In the diagram below, AD intersects BE at C, and $AB \parallel DE$.

![Diagram](image)

If $CD = 6.6$ cm, $DE = 3.4$ cm, $CE = 4.2$ cm, and $BC = 5.25$ cm, what is the length of AC, to the nearest hundredth of a centimeter?
1) 2.70
2) 3.34
3) 5.28
4) 8.25
221 In \(\triangle ABC \) shown below, side \(AC \) is extended to point \(D \) with \(\angle DAB = (180 - 3x)^\circ \), \(\angle B = (6x - 40)^\circ \), and \(\angle C = (x + 20)^\circ \).

What is \(\angle BAC \)?
1) 20\(^\circ\)
2) 40\(^\circ\)
3) 60\(^\circ\)
4) 80\(^\circ\)

222 Rectangle \(A'B'C'D' \) is the image of rectangle \(ABCD \) after a dilation centered at point \(A \) by a scale factor of \(\frac{2}{3} \). Which statement is correct?
1) Rectangle \(A'B'C'D' \) has a perimeter that is \(\frac{2}{3} \) the perimeter of rectangle \(ABCD \).
2) Rectangle \(A'B'C'D' \) has a perimeter that is \(\frac{3}{2} \) the perimeter of rectangle \(ABCD \).
3) Rectangle \(A'B'C'D' \) has an area that is \(\frac{2}{3} \) the area of rectangle \(ABCD \).
4) Rectangle \(A'B'C'D' \) has an area that is \(\frac{3}{2} \) the area of rectangle \(ABCD \).

223 Circle \(O \) is centered at the origin. In the diagram below, a quarter of circle \(O \) is graphed.

Which three-dimensional figure is generated when the quarter circle is continuously rotated about the \(y \)-axis?
1) cone
2) sphere
3) cylinder
4) hemisphere

224 A line segment is dilated by a scale factor of 2 centered at a point not on the line segment. Which statement regarding the relationship between the given line segment and its image is true?
1) The line segments are perpendicular, and the image is one-half of the length of the given line segment.
2) The line segments are perpendicular, and the image is twice the length of the given line segment.
3) The line segments are parallel, and the image is twice the length of the given line segment.
4) The line segments are parallel, and the image is one-half of the length of the given line segment.
225 In the diagram below of circle \(O \), chord \(CD \) is parallel to diameter \(AOB \) and \(m\overarc{CD} = 130 \).

What is \(m\overarc{AC} \)?
1) 25
2) 50
3) 65
4) 115

226 In the diagram below, \(AB \parallel DFC \), \(EDA \parallel CBG \), and \(EFB \) and \(AG \) are drawn.

Which statement is always true?
1) \(\triangle DEF \cong \triangle CBF \)
2) \(\triangle BAG \cong \triangle BAE \)
3) \(\triangle BAG \sim \triangle AEB \)
4) \(\triangle DEF \sim \triangle AEB \)

227 In the diagram below, if \(\triangle ABE \cong \triangle CDF \) and \(AEFC \) is drawn, then it could be proven that quadrilateral \(ABCD \) is a

1) square
2) rhombus
3) rectangle
4) parallelogram

228 In the diagram below, \(m\angle ABC = 268\degree \).

What is the number of degrees in the measure of \(\angle ABC \)?
1) 134\degree
2) 92\degree
3) 68\degree
4) 46\degree

229 A parallelogram must be a rhombus if its diagonals
1) are congruent
2) bisect each other
3) do not bisect its angles
4) are perpendicular to each other
230 The image of \(\triangle DEF \) is \(\triangle D'E'F' \). Under which transformation will the triangles not be congruent?
1) a reflection through the origin
2) a reflection over the line \(y = x \)
3) a dilation with a scale factor of 1 centered at (2,3)
4) a dilation with a scale factor of \(\frac{3}{2} \) centered at the origin

231 In the diagram of \(\triangle RST \) below, \(m\angle T = 90^\circ \), \(RS = 65 \), and \(ST = 60 \).

What is the measure of \(\angle S \), to the nearest degree?
1) 23°
2) 43°
3) 47°
4) 67°

232 Which equation represents the line that passes through the point \((-2,2)\) and is parallel to \(y = \frac{1}{2}x + 8 \)?
1) \(y = \frac{1}{2}x \)
2) \(y = -2x - 3 \)
3) \(y = \frac{1}{2}x + 3 \)
4) \(y = -2x + 3 \)

233 In the diagram below of right triangle \(ABC \), altitude \(BD \) is drawn to hypotenuse \(AC \).

If \(BD = 4 \), \(AD = x - 6 \), and \(CD = x \), what is the length of \(CD \)?
1) 5
2) 2
3) 8
4) 11

234 In the diagram below, \(\overline{AEFB} \parallel \overline{CGD} \), and \(GE \) and \(GF \) are drawn.

If \(m\angle EFG = 32^\circ \) and \(m\angle AEG = 137^\circ \), what is \(m\angle EGF \)?
1) 11°
2) 43°
3) 75°
4) 105°
235 In the diagram below of right triangle AED, $\overline{BC} \parallel \overline{DE}$.

Which statement is always true?
1) $\frac{AC}{BC} = \frac{DE}{AE}$
2) $\frac{AB}{AD} = \frac{BC}{DE}$
3) $\frac{AC}{CE} = \frac{BC}{DE}$
4) $\frac{DE}{BC} = \frac{DB}{AB}$

236 In quadrilateral $BLUE$ shown below, $\overline{BE} \cong \overline{UL}$.

Which information would be sufficient to prove quadrilateral $BLUE$ is a parallelogram?
1) $\overline{BL} \parallel \overline{EU}$
2) $\overline{LU} \parallel \overline{BE}$
3) $\overline{BE} \cong \overline{BL}$
4) $\overline{LU} \cong \overline{EU}$

237 The greenhouse pictured below can be modeled as a rectangular prism with a half-cylinder on top. The rectangular prism is 20 feet wide, 12 feet high, and 45 feet long. The half-cylinder has a diameter of 20 feet.

To the nearest cubic foot, what is the volume of the greenhouse?
1) 17,869
2) 24,937
3) 39,074
4) 67,349

238 Given $\triangle ABC$ with $m\angle B = 62^\circ$ and side \overline{AC} extended to D, as shown below.

Which value of x makes $\overline{AB} \cong \overline{CB}$?
1) 59°
2) 62°
3) 118°
4) 121°
239 In the diagram below, line \(m \) is parallel to line \(n \). Figure 2 is the image of Figure 1 after a reflection over line \(m \). Figure 3 is the image of Figure 2 after a reflection over line \(n \).

Which single transformation would carry Figure 1 onto Figure 3?
1) a dilation
2) a rotation
3) a reflection
4) a translation

240 In the diagram below of parallelogram \(ROCK \), \(m\angle C \) is 70° and \(m\angle ROS \) is 65°.

What is \(m\angle KSO \)?
1) 45°
2) 110°
3) 115°
4) 135°

241 Quadrilateral \(ABCD \) is inscribed in circle \(O \), as shown below.

If \(m\angle A = 80^\circ \), \(m\angle B = 75^\circ \), \(m\angle C = (y + 30)^\circ \), and \(m\angle D = (x - 10)^\circ \), which statement is true?
1) \(x = 85 \) and \(y = 50 \)
2) \(x = 90 \) and \(y = 45 \)
3) \(x = 110 \) and \(y = 75 \)
4) \(x = 115 \) and \(y = 70 \)

242 A fabricator is hired to make a 27-foot-long solid metal railing for the stairs at the local library. The railing is modeled by the diagram below. The railing is 2.5 inches high and 2.5 inches wide and is comprised of a rectangular prism and a half-cylinder.

How much metal, to the nearest cubic inch, will the railing contain?
1) 151
2) 795
3) 1808
4) 2025
243 Identify which sequence of transformations could map pentagon $ABCDE$ onto pentagon $A''B''C''D''E''$, as shown below.

1) dilation followed by a rotation
2) translation followed by a rotation
3) line reflection followed by a translation
4) line reflection followed by a line reflection

244 An ice cream waffle cone can be modeled by a right circular cone with a base diameter of 6.6 centimeters and a volume of 54.45π cubic centimeters. What is the number of centimeters in the height of the waffle cone?

1) $\frac{3\frac{3}{4}}{4}$
2) 5
3) 15
4) $24\frac{3}{4}$

245 Which figure always has exactly four lines of reflection that map the figure onto itself?

1) square
2) rectangle
3) regular octagon
4) equilateral triangle

246 A right hexagonal prism is shown below. A two-dimensional cross section that is perpendicular to the base is taken from the prism.

Which figure describes the two-dimensional cross section?

1) triangle
2) rectangle
3) pentagon
4) hexagon

247 The diagram below shows parallelogram $ABCD$ with diagonals AC and BD intersecting at E.

What additional information is sufficient to prove that parallelogram $ABCD$ is also a rhombus?

1) BD bisects AC.
2) AB is parallel to CD.
3) AC is congruent to BD.
4) AC is perpendicular to BD.
248 A regular pyramid has a square base. The perimeter of the base is 36 inches and the height of the pyramid is 15 inches. What is the volume of the pyramid in cubic inches?
1) 180
2) 405
3) 540
4) 1215

249 Seawater contains approximately 1.2 ounces of salt per liter on average. How many gallons of seawater, to the nearest tenth of a gallon, would contain 1 pound of salt?
1) 3.3
2) 3.5
3) 4.7
4) 13.3

250 In a right triangle, the acute angles have the relationship \(\sin(2x + 4) = \cos(46) \). What is the value of \(x \)?
1) 20
2) 21
3) 24
4) 25

251 A farmer has 64 feet of fence to enclose a rectangular vegetable garden. Which dimensions would result in the biggest area for this garden?
1) the length and the width are equal
2) the length is 2 more than the width
3) the length is 4 more than the width
4) the length is 6 more than the width

252 Point \(Q \) is on \(MN \) such that \(MQ:QN = 2:3 \). If \(M \) has coordinates (3,5) and \(N \) has coordinates (8,−5), the coordinates of \(Q \) are
1) (5,1)
2) (5,0)
3) (6,−1)
4) (6,0)

253 Which equation represents a line that is perpendicular to the line represented by \(y = \frac{2}{3}x + 1 \)?
1) \(3x + 2y = 12 \)
2) \(3x − 2y = 12 \)
3) \(y = \frac{3}{2}x + 2 \)
4) \(y = \frac{2}{3}x + 4 \)

254 In triangle \(ABC \), points \(D \) and \(E \) are on sides \(AB \) and \(BC \), respectively, such that \(DE \parallel AC \), and \(AD:DB = 3:5 \).

If \(DB = 6.3 \) and \(AC = 9.4 \), what is the length of \(DE \), to the nearest tenth?
1) 3.8
2) 5.6
3) 5.9
4) 15.7
255 In the diagram of $\triangle ABC$ below, points D and E are on sides AB and CB respectively, such that $DE \parallel AC$.

![Diagram of triangle ABC with points D and E on sides AB and CB, respectively.](image1)

If EB is 3 more than DB, $AB = 14$, and $CB = 21$, what is the length of AD?
1) 6
2) 8
3) 9
4) 12

256 In the diagram below, triangle ACD has points B and E on sides AC and AD, respectively, such that $BE \parallel CD$, $AB = 1$, $BC = 3.5$, and $AD = 18$.

![Diagram of triangle ACD with points B and E on sides AC and AD, respectively.](image2)

What is the length of AE, to the nearest tenth?
1) 14.0
2) 5.1
3) 3.3
4) 4.0

257 A two-dimensional cross section is taken of a three-dimensional object. If this cross section is a triangle, what can not be the three-dimensional object?
1) cone
2) cylinder
3) pyramid
4) rectangular prism

258 In the accompanying diagram of right triangle ABC, altitude BD is drawn to hypotenuse AC.

![Diagram of right triangle ABC with altitude BD drawn to hypotenuse AC.](image3)

Which statement must always be true?
1) $\frac{AD}{AB} = \frac{BC}{AC}$
2) $\frac{AD}{AB} = \frac{AB}{AC}$
3) $\frac{BD}{BC} = \frac{AB}{AD}$
4) $\frac{AB}{BC} = \frac{BD}{AC}$

259 A circle with a diameter of 10 cm and a central angle of 30° is drawn below.

![Diagram of circle with central angle of 30°.](image4)

What is the area, to the nearest tenth of a square centimeter, of the sector formed by the 30° angle?
1) 5.2
2) 6.5
3) 13.1
4) 26.2
260 The 2010 U.S. Census populations and population densities are shown in the table below.

<table>
<thead>
<tr>
<th>State</th>
<th>Population Density (people per mi²)</th>
<th>Population in 2010</th>
</tr>
</thead>
<tbody>
<tr>
<td>Florida</td>
<td>350.6</td>
<td>18,801,310</td>
</tr>
<tr>
<td>Illinois</td>
<td>231.1</td>
<td>12,830,632</td>
</tr>
<tr>
<td>New York</td>
<td>411.2</td>
<td>19,378,102</td>
</tr>
<tr>
<td>Pennsylvania</td>
<td>283.9</td>
<td>12,702,379</td>
</tr>
</tbody>
</table>

Based on the table above, which list has the states' areas, in square miles, in order from largest to smallest?

1) Illinois, Florida, New York, Pennsylvania
2) New York, Florida, Illinois, Pennsylvania

261 A rectangle whose length and width are 10 and 6, respectively, is shown below. The rectangle is continuously rotated around a straight line to form an object whose volume is 150π.

Which line could the rectangle be rotated around?

1) a long side
2) a short side
3) the vertical line of symmetry
4) the horizontal line of symmetry

262 In the two distinct acute triangles ABC and DEF, $\angle B \cong \angle E$. Triangles ABC and DEF are congruent when there is a sequence of rigid motions that maps

1) $\angle A$ onto $\angle D$, and $\angle C$ onto $\angle F$
2) AC onto DF, and BC onto EF
3) $\angle C$ onto $\angle F$, and BC onto EF
4) point A onto point D, and AB onto DE

263 The pyramid shown below has a square base, a height of 7, and a volume of 84.

What is the length of the side of the base?

1) 6
2) 12
3) 18
4) 36

264 In a right triangle, $\sin(40 - x)^\circ = \cos(3x)^\circ$. What is the value of x?

1) 10
2) 15
3) 20
4) 25
265 Yolanda is making a springboard to use for gymnastics. She has 8-inch-tall springs and wants to form a 16.5° angle with the base, as modeled in the diagram below.

To the nearest tenth of an inch, what will be the length of the springboard, \(x\)?
1) 2.3
2) 8.3
3) 27.0
4) 28.2

266 The line whose equation is \(3x - 5y = 4\) is dilated by a scale factor of \(\frac{5}{3}\) centered at the origin. Which statement is correct?
1) The image of the line has the same slope as the pre-image but a different \(y\)-intercept.
2) The image of the line has the same \(y\)-intercept as the pre-image but a different slope.
3) The image of the line has the same slope and the same \(y\)-intercept as the pre-image.
4) The image of the line has a different slope and a different \(y\)-intercept from the pre-image.

267 In right triangle \(ABC\), \(\angle A = 32^\circ\), \(\angle B = 90^\circ\), and \(AC = 6.2\) cm. What is the length of \(BC\), to the nearest tenth of a centimeter?
1) 3.3
2) 3.9
3) 5.3
4) 11.7

268 In the diagram below of circle \(O\), chord \(DF\) bisects chord \(BC\) at \(E\).

If \(BC = 12\) and \(FE\) is 5 more than \(DE\), then \(FE\) is
1) 13
2) 9
3) 6
4) 4

269 In the diagram below, two concentric circles with center \(O\), and radii \(OC, OD, OGE,\) and \(ODF\) are drawn.

If \(OC = 4\) and \(OE = 6\), which relationship between the length of arc \(EF\) and the length of arc \(CD\) is always true?
1) The length of arc \(EF\) is 2 units longer than the length of arc \(CD\).
2) The length of arc \(EF\) is 4 units longer than the length of arc \(CD\).
3) The length of arc \(EF\) is 1.5 times the length of arc \(CD\).
4) The length of arc \(EF\) is 2.0 times the length of arc \(CD\).
270 In the diagram below, rectangle $ABCD$ has vertices whose coordinates are $A(7,1)$, $B(9,3)$, $C(3,9)$, and $D(1,7)$.

Which transformation will not carry the rectangle onto itself?
1) a reflection over the line $y = x$
2) a reflection over the line $y = -x + 10$
3) a rotation of 180° about the point $(6,6)$
4) a rotation of 180° about the point $(5,5)$

271 In $\triangle ABC$, \overline{BD} is the perpendicular bisector of \overline{ADC}. Based upon this information, which statements below can be proven?
I. \overline{BD} is a median.
II. \overline{BD} bisects $\angle ABC$.
III. $\triangle ABC$ is isosceles.
1) I and II, only
2) I and III, only
3) II and III, only
4) I, II, and III

272 In the diagram below, $\triangle DEF$ is the image of $\triangle ABC$ after a clockwise rotation of 180° and a dilation where $AB = 3$, $BC = 5.5$, $AC = 4.5$, $DE = 6$, $FD = 9$, and $EF = 11$.

Which relationship must always be true?
1) \(\frac{\angle A}{\angle D} = \frac{1}{2}\)
2) \(\frac{\angle C}{\angle F} = \frac{2}{1}\)
3) \(\frac{\angle A}{\angle C} = \frac{\angle F}{\angle D}\)
4) \(\frac{\angle B}{\angle E} = \frac{\angle C}{\angle F}\)

273 As shown in the diagram below, $\overrightarrow{ABC} \parallel \overrightarrow{EFG}$ and $\overline{BF} \cong \overline{EF}$.

If $\angle CBF = 42.5^\circ$, then $\angle EBF$ is
1) 42.5°
2) 68.75°
3) 95°
4) 137.5°
274 In the diagram below, \(\overline{DE}, \overline{DF},\) and \(\overline{EF}\) are midsegments of \(\triangle ABC\).

The perimeter of quadrilateral \(ADEF\) is equivalent to
1) \(AB + BC + AC\)
2) \(\frac{1}{2} AB + \frac{1}{2} AC\)
3) \(2AB + 2AC\)
4) \(AB + AC\)

275 In the diagram of right triangle \(ADE\) below, \(BC \parallel DE\).

Which ratio is always equivalent to the sine of \(\angle A\)?
1) \(\frac{AD}{DE}\)
2) \(\frac{AE}{AD}\)
3) \(\frac{BC}{AB}\)
4) \(\frac{AB}{AC}\)

276 The regular polygon below is rotated about its center.

Which angle of rotation will carry the figure onto itself?
1) \(60°\)
2) \(108°\)
3) \(216°\)
4) \(540°\)

277 In the diagram below of triangle \(MNO\), \(\angle M\) and \(\angle O\) are bisected by \(\overline{MS}\) and \(\overline{OR}\), respectively. Segments \(MS\) and \(OR\) intersect at \(T\), and \(m\angle N = 40°\).

If \(m\angle TMR = 28°\), the measure of angle \(OTS\) is
1) \(40°\)
2) \(50°\)
3) \(60°\)
4) \(70°\)
Geometry Multiple Choice Regents Exam Questions
www.jmap.org

278 In right triangle ABC, hypotenuse AB has a length of 26 cm, and side BC has a length of 17.6 cm. What is the measure of angle B, to the nearest degree?
1) 48°
2) 47°
3) 43°
4) 34°

279 On the graph below, point $A(3,4)$ and BC with coordinates $B(4,3)$ and $C(2,1)$ are graphed.

What are the coordinates of B' and C' after BC undergoes a dilation centered at point A with a scale factor of 2?
1) $B'(5,2)$ and $C'(1,-2)$
2) $B'(6,1)$ and $C'(0,-1)$
3) $B'(5,0)$ and $C'(1,-2)$
4) $B'(5,2)$ and $C'(3,0)$

280 The equation of a circle is $x^2 + y^2 − 6y + 1 = 0$. What are the coordinates of the center and the length of the radius of this circle?
1) center $(0,3)$ and radius $= 2\sqrt{2}$
2) center $(0,−3)$ and radius $= 2\sqrt{2}$
3) center $(0,6)$ and radius $= \sqrt{35}$
4) center $(0,−6)$ and radius $= \sqrt{35}$

281 If $\triangle ABC$ is mapped onto $\triangle DEF$ after a line reflection and $\triangle DEF$ is mapped onto $\triangle XYZ$ after a translation, the relationship between $\triangle ABC$ and $\triangle XYZ$ is that they are always
1) congruent and similar
2) congruent but not similar
3) similar but not congruent
4) neither similar nor congruent

282 In the diagram of $\triangle ABC$ below, DE is parallel to AB, $CD = 15$, $AD = 9$, and $AB = 40$.

The length of DE is
1) 15
2) 24
3) 25
4) 30

283 What is an equation of the line that passes through the point $(6,8)$ and is perpendicular to a line with equation $y = \frac{3}{2}x + 5$?
1) $y − 8 = \frac{3}{2}(x − 6)$
2) $y − 8 = −\frac{2}{3}(x − 6)$
3) $y + 8 = \frac{3}{2}(x + 6)$
4) $y + 8 = −\frac{2}{3}(x + 6)$
284 In regular hexagon \(ABCDEF\) shown below, \(AD\), \(BE\), and \(CF\) all intersect at \(G\).

When \(\triangle ABG\) is reflected over \(BG\) and then rotated 180° about point \(G\), \(\triangle ABG\) is mapped onto
1) \(\triangle FEG\)
2) \(\triangle AFG\)
3) \(\triangle CBG\)
4) \(\triangle DEG\)

285 Kelly is completing a proof based on the figure below.

She was given that \(\angle A \cong \angle EDF\), and has already proven \(AB \cong DE\). Which pair of corresponding parts and triangle congruency method would not prove \(\triangle ABC \cong \triangle DEF\)?
1) \(AC \cong DF\) and SAS
2) \(BC \cong EF\) and SAS
3) \(\angle C \cong \angle F\) and AAS
4) \(\angle CBA \cong \angle FED\) and ASA

286 If \(ABCD\) is a parallelogram, which statement would prove that \(ABCD\) is a rhombus?
1) \(\angle ABC \cong \angle CDA\)
2) \(AC \cong BD\)
3) \(AC \perp BD\)
4) \(AB \perp CD\)

287 An equation of circle \(O\) is \(x^2 + y^2 + 4x - 8y = -16\).
The statement that best describes circle \(O\) is the
1) center is \((2, -4)\) and is tangent to the x-axis
2) center is \((2, -4)\) and is tangent to the y-axis
3) center is \((-2, 4)\) and is tangent to the x-axis
4) center is \((-2, 4)\) and is tangent to the y-axis

288 Which set of statements would describe a parallelogram that can always be classified as a rhombus?
 I. Diagonals are perpendicular bisectors of each other.
 II. Diagonals bisect the angles from which they are drawn.
 III. Diagonals form four congruent isosceles right triangles.
1) I and II
2) I and III
3) II and III
4) I, II, and III

289 Line \(MN\) is dilated by a scale factor of 2 centered at the point \((0, 6)\). If \(MN\) is represented by \(y = -3x + 6\), which equation can represent \(M'N'\), the image of \(MN\)?
1) \(y = -3x + 12\)
2) \(y = -3x + 6\)
3) \(y = -6x + 12\)
4) \(y = -6x + 6\)
290 A solid metal prism has a rectangular base with sides of 4 inches and 6 inches, and a height of 4 inches. A hole in the shape of a cylinder, with a radius of 1 inch, is drilled through the entire length of the rectangular prism.

What is the approximate volume of the remaining solid, in cubic inches?
1) 19
2) 77
3) 93
4) 96

291 In the diagram below, $AB \parallel DEF$, AE and BD intersect at C, $m\angle B = 43^\circ$, and $m\angle CEF = 152^\circ$.

Which statement is true?
1) $m\angle D = 28^\circ$
2) $m\angle A = 43^\circ$
3) $m\angle ACD = 71^\circ$
4) $m\angle BCE = 109^\circ$

292 Parallelogram $HAND$ is drawn below with diagonals HN and AD intersecting at S.

Which statement is always true?
1) $AN = \frac{1}{2} AD$
2) $AS = \frac{1}{2} AD$
3) $\angle AHS \cong \angle ANS$
4) $\angle HDS \cong \angle NDS$

293 As shown in the graph below, the quadrilateral is a rectangle.

Which transformation would not map the rectangle onto itself?
1) a reflection over the x-axis
2) a reflection over the line $x = 4$
3) a rotation of 180° about the origin
4) a rotation of 180° about the point $(4,0)$
294. Triangle DAN is graphed on the set of axes below. The vertices of $\triangle DAN$ have coordinates $D(-6,-1)$, $A(6,3)$, and $N(-3,10)$. What is the area of $\triangle DAN$?

1) 60
2) 120
3) $20\sqrt{13}$
4) $40\sqrt{13}$

295. In the diagram below of circle O, chords AB and CD intersect at E.

If $m\overarc{AC} = 72^\circ$ and $m\angle AEC = 58^\circ$, how many degrees are in $m\overarc{DB}$?

1) 108°
2) 65°
3) 44°
4) 14°

296. The base of a pyramid is a rectangle with a width of 4.6 cm and a length of 9 cm. What is the height, in centimeters, of the pyramid if its volume is 82.8 cm3?

1) 6
2) 2
3) 9
4) 18

297. A regular decagon is rotated n degrees about its center, carrying the decagon onto itself. The value of n could be

1) 10°
2) 150°
3) 225°
4) 252°

298. In the diagram below, $\triangle ADE$ is the image of $\triangle ABC$ after a reflection over the line AC followed by a dilation of scale factor $\frac{AE}{AC}$ centered at point A.

Which statement must be true?

1) $m\angle BAC \approx m\angle AED$
2) $m\angle ABC \approx m\angle ADE$
3) $m\angle DAE \approx \frac{1}{2} m\angle BAC$
4) $m\angle ACB \approx \frac{1}{2} m\angle DAB$
299 In right triangle ABC, $\angle C = 90^\circ$. If $\cos B = \frac{5}{13}$, which function also equals $\frac{5}{13}$?
1) $\tan A$
2) $\tan B$
3) $\sin A$
4) $\sin B$

300 A circle whose center is the origin passes through the point $(-5, 12)$. Which point also lies on this circle?
1) $(10, 3)$
2) $(-12, 13)$
3) $(11, 2\sqrt{12})$
4) $(-8, 5\sqrt{21})$

301 In the diagram below, $\triangle ABC \cong \triangle DEF$. Which sequence of transformations maps $\triangle ABC$ onto $\triangle DEF$?
1) a reflection over the x-axis followed by a translation
2) a reflection over the y-axis followed by a translation
3) a rotation of 180° about the origin followed by a translation
4) a counterclockwise rotation of 90° about the origin followed by a translation

302 In the diagram below, \overline{AC} has endpoints with coordinates $A(-5, 2)$ and $C(4, -10)$.

If B is a point on \overline{AC} and $AB:BC = 1:2$, what are the coordinates of B?
1) $(-2, -2)$
2) $\left(\frac{1}{2}, -4\right)$
3) $\left(0, \frac{14}{3}\right)$
4) $(1, -6)$

303 In circle O two secants, \overline{ABP} and \overline{CDP}, are drawn to external point P. If $m\overline{AC} = 72^\circ$, and $m\overline{BD} = 34^\circ$, what is the measure of $\angle P$?
1) 19°
2) 38°
3) 53°
4) 106°
304 In the diagram below, right triangle ABC has legs whose lengths are 4 and 6.

What is the volume of the three-dimensional object formed by continuously rotating the right triangle around AB?
1) 32π
2) 48π
3) 96π
4) 144π

305 What is an equation of a line that is perpendicular to the line whose equation is $2y = 3x - 10$ and passes through $(-6, 1)$?
1) $y = -\frac{2}{3}x - 5$
2) $y = -\frac{2}{3}x - 3$
3) $y = \frac{2}{3}x + 1$
4) $y = \frac{2}{3}x + 10$

306 The coordinates of the endpoints of \overline{AB} are $A(-8, -2)$ and $B(16, 6)$. Point P is on AB. What are the coordinates of point P, such that $AP:PB$ is 3:5?
1) $(1, 1)$
2) $(7, 3)$
3) $(9, 6, 3, 6)$
4) $(6, 4, 2.8)$

307 To build a handicapped-access ramp, the building code states that for every 1 inch of vertical rise in height, the ramp must extend out 12 inches horizontally, as shown in the diagram below.

What is the angle of inclination, x, of this ramp, to the nearest hundredth of a degree?
1) 4.76
2) 4.78
3) 85.22
4) 85.24

308 In the diagram shown below, PA is tangent to circle T at A, and secant PBC is drawn where point B is on circle T.

If $PB = 3$ and $BC = 15$, what is the length of PA?
1) $3\sqrt{5}$
2) $3\sqrt{6}$
3) 3
4) 9

309 If $\sin(2x + 7)^\circ = \cos(4x - 7)^\circ$, what is the value of x?
1) 7
2) 15
3) 21
4) 30
310 In the diagram below of \(\triangle PQR \), \(ST \) is drawn parallel to \(PR \), \(PS = 2 \), \(SQ = 5 \), and \(TR = 5 \).

What is the length of \(QR \)?

1) 7
2) 2
3) 12 \(\frac{1}{2} \)
4) 17 \(\frac{1}{2} \)

311 The diagram below shows two similar triangles.

If \(\tan \theta = \frac{3}{7} \), what is the value of \(x \), to the nearest tenth?

1) 1.2
2) 5.6
3) 7.6
4) 8.8

312 A child's tent can be modeled as a pyramid with a square base whose sides measure 60 inches and whose height measures 84 inches. What is the volume of the tent, to the nearest cubic foot?

1) 35
2) 58
3) 82
4) 175

313 A plane intersects a hexagonal prism. The plane is perpendicular to the base of the prism. Which two-dimensional figure is the cross section of the plane intersecting the prism?

1) triangle
2) trapezoid
3) hexagon
4) rectangle

314 Directed line segment \(DE \) has endpoints \(D(-4, -2) \) and \(E(1, 8) \). Point \(F \) divides \(DE \) such that \(DF:FE \) is 2:3. What are the coordinates of \(F \)?

1) \((-3, 0)\)
2) \((-2, 2)\)
3) \((-1, 4)\)
4) \((2, 4)\)

315 Triangle \(A'B'C' \) is the image of \(\triangle ABC \) after a dilation followed by a translation. Which statement(s) would always be true with respect to this sequence of transformations?

I. \(\triangle ABC \cong \triangle A'B'C' \)
II. \(\triangle ABC \sim \triangle A'B'C' \)
III. \(AB \parallel A'B' \)
IV. \(AA' = BB' \)

1) II, only
2) I and II
3) II and III
4) II, III, and IV
316 In the diagram below, \overline{AKS}, \overline{NKC}, \overline{AN}, and \overline{SC} are drawn such that $\overline{AN} \cong \overline{SC}$.

Which additional statement is sufficient to prove $\triangle KAN \cong \triangle KSC$ by AAS?

1) \overline{AS} and \overline{NC} bisect each other.
2) K is the midpoint of \overline{NC}.
3) $\overline{AS} \perp \overline{CN}$
4) $\overline{AN} \parallel \overline{SC}$

317 Parallelogram $ABCD$ has coordinates $A(0,7)$ and $C(2,1)$. Which statement would prove that $ABCD$ is a rhombus?

1) The midpoint of \overline{AC} is $(1,4)$.
2) The length of \overline{BD} is $\sqrt{40}$.
3) The slope of \overline{BD} is $\frac{1}{3}$.
4) The slope of \overline{AB} is $\frac{1}{3}$.

318 Given $\triangle ABC \cong \triangle DEF$, which statement is not always true?

1) $\overline{BC} \cong \overline{DF}$
2) $m\angle A = m\angle D$
3) area of $\triangle ABC = $ area of $\triangle DEF$
4) perimeter of $\triangle ABC = $ perimeter of $\triangle DEF$

319 A water cup in the shape of a cone has a height of 4 inches and a maximum diameter of 3 inches. What is the volume of the water in the cup, to the nearest tenth of a cubic inch, when the cup is filled to half its height?

1) 1.2
2) 3.5
3) 4.7
4) 14.1

320 The diagram shows rectangle $ABCD$, with diagonal \overline{BD}.

What is the perimeter of rectangle $ABCD$, to the nearest tenth?

1) 28.4
2) 32.8
3) 48.0
4) 62.4
321 In circle O, secants \overline{ADB} and \overline{AEC} are drawn from external point A such that points D, B, E, and C are on circle O. If $AD = 8$, $AE = 6$, and EC is 12 more than BD, the length of BD is
1) 6
2) 22
3) 36
4) 48

322 Under which transformation would $\triangle A'B'C'$, the image of $\triangle ABC$, not be congruent to $\triangle ABC$?
1) reflection over the y-axis
2) rotation of 90° clockwise about the origin
3) translation of 3 units right and 2 units down
4) dilation with a scale factor of 2 centered at the origin

323 A man was parasailing above a lake at an angle of elevation of 32° from a boat, as modeled in the diagram below.

If 129.5 meters of cable connected the boat to the parasail, approximately how many meters above the lake was the man?
1) 68.6
2) 80.9
3) 109.8
4) 244.4

324 In circle M below, diameter \overline{AC}, chords \overline{AB} and \overline{BC}, and radius \overline{MB} are drawn.

Which statement is not true?
1) $\triangle ABC$ is a right triangle.
2) $\triangle ABM$ is isosceles.
3) $m\angle BC = m\angle BMC$
4) $m\overline{AB} = \frac{1}{2} m\angle ACB$

325 In the diagram below of $\triangle ABC$, D, E, and F are the midpoints of \overline{AB}, \overline{BC}, and \overline{CA}, respectively.

What is the ratio of the area of $\triangle CFE$ to the area of $\triangle CAB$?
1) 1:1
2) 1:2
3) 1:3
4) 1:4
326 In a circle with a diameter of 32, the area of a sector is $\frac{512\pi}{3}$. The measure of the angle of the sector, in radians, is
1) $\frac{\pi}{3}$
2) $\frac{4\pi}{3}$
3) $\frac{16\pi}{3}$
4) $\frac{64\pi}{3}$

327 A parallelogram is always a rectangle if
1) the diagonals are congruent
2) the diagonals bisect each other
3) the diagonals intersect at right angles
4) the opposite angles are congruent

328 In the diagram below of $\triangle HAR$ and $\triangle NTY$, angles H and N are right angles, and $\triangle HAR \sim \triangle NTY$.

If $AR = 13$ and $HR = 12$, what is the measure of angle Y, to the nearest degree?
1) 23°
2) 25°
3) 65°
4) 67°

329 In the diagram below of $\triangle ABC$, $\angle ABC$ is a right angle, $AC = 12$, $AD = 8$, and altitude BD is drawn.

What is the length of BC?
1) $4\sqrt{2}$
2) $4\sqrt{3}$
3) $4\sqrt{5}$
4) $4\sqrt{6}$

330 What is an equation of the perpendicular bisector of the line segment shown in the diagram below?
1) $y + 2x = 0$
2) $y - 2x = 0$
3) $2y + x = 0$
4) $2y - x = 0$
331 In the diagram below, \(\angle GRS \cong \angle ART \), \(GR = 36 \), \(SR = 45 \), \(AR = 15 \), and \(RT = 18 \).

Which triangle similarity statement is correct?
1) \(\triangle GRS \sim \triangle ART \) by AA.
2) \(\triangle GRS \sim \triangle ART \) by SAS.
3) \(\triangle GRS \sim \triangle ART \) by SSS.
4) \(\triangle GRS \) is not similar to \(\triangle ART \).

332 What is an equation of a line which passes through \((6,9)\) and is perpendicular to the line whose equation is \(4x - 6y = 15\)?
1) \(y - 9 = -\frac{3}{2}(x - 6) \)
2) \(y - 9 = \frac{2}{3}(x - 6) \)
3) \(y + 9 = -\frac{3}{2}(x + 6) \)
4) \(y + 9 = \frac{2}{3}(x + 6) \)

333 An isosceles right triangle whose legs measure 6 is continuously rotated about one of its legs to form a three-dimensional object. The three-dimensional object is a
1) cylinder with a diameter of 6
2) cylinder with a diameter of 12
3) cone with a diameter of 6
4) cone with a diameter of 12

334 In the diagram below, \(AC = 7.2 \) and \(CE = 2.4 \).

Which statement is not sufficient to prove \(\triangle ABC \sim \triangle EDC \)?
1) \(AB \parallel ED \)
2) \(DE = 2.7 \) and \(AB = 8.1 \)
3) \(CD = 3.6 \) and \(BC = 10.8 \)
4) \(DE = 3.0 \), \(AB = 9.0 \), \(CD = 2.9 \), and \(BC = 8.7 \)

335 In the diagram below, \(XS \) and \(YR \) intersect at \(Z \).
Segments \(XY \) and \(RS \) are drawn perpendicular to \(YR \) to form triangles \(XYZ \) and \(SRZ \).

Which statement is always true?
1) \((XY)(SR) = (XZ)(RZ) \)
2) \(\triangle XYZ \cong \triangle SRZ \)
3) \(XS \cong YR \)
4) \(\frac{XY}{SR} = \frac{YZ}{RZ} \)
336 In the diagram below, \overline{AF} and \overline{DB} intersect at C, and \overline{AD} and \overline{FBE} are drawn such that $m\angle D = 65^\circ$, $m\angle CBE = 115^\circ$, $DC = 7.2$, $AC = 9.6$, and $FC = 21.6$.

What is the length of \overline{CB}?
1) 3.2
2) 4.8
3) 16.2
4) 19.2

337 The vertices of square $RSTV$ have coordinates $R(−1,5)$, $S(−3,1)$, $T(−7,3)$, and $V(−5,7)$. What is the perimeter of $RSTV$?
1) $\sqrt{20}$
2) $\sqrt{40}$
3) $4\sqrt{20}$
4) $4\sqrt{40}$

338 Triangle RJM has an area of 6 and a perimeter of 12. If the triangle is dilated by a scale factor of 3 centered at the origin, what are the area and perimeter of its image, triangle $R'J'M'$?
1) area of 9 and perimeter of 15
2) area of 18 and perimeter of 36
3) area of 54 and perimeter of 36
4) area of 54 and perimeter of 108

339 A ladder 20 feet long leans against a building, forming an angle of 71° with the level ground. To the nearest foot, how high up the wall of the building does the ladder touch the building?
1) 15
2) 16
3) 18
4) 19

340 In the diagram below, a sequence of rigid motions maps $ABCD$ onto $JKLM$.

If $m\angle A = 82^\circ$, $m\angle B = 104^\circ$, and $m\angle L = 121^\circ$, the measure of $\angle M$ is
1) 53°
2) 82°
3) 104°
4) 121°
341 Quadrilateral $MATH$ has both pairs of opposite sides congruent and parallel. Which statement about quadrilateral $MATH$ is always true?

1) $MT \cong AH$
2) $MT \perp AH$
3) $\angle MHT \cong \angle ATH$
4) $\angle MAT \cong \angle MHT$

342 The diagram below shows circle O with radii OA and OB. The measure of angle AOB is 120°, and the length of a radius is 6 inches.

Which expression represents the length of arc AB, in inches?

1) $\frac{120}{360}(6\pi)$
2) $120(6)$
3) $\frac{1}{3}(36\pi)$
4) $\frac{1}{3}(12\pi)$

343 Line segment CD is the altitude drawn to hypotenuse EF in right triangle ECF. If $EC = 10$ and $EF = 24$, then, to the nearest tenth, ED is

1) 4.2
2) 5.4
3) 15.5
4) 21.8
344 On the set of axes below, $\triangle ABC \cong \triangle STU$.

Describe a sequence of rigid motions that maps $\triangle ABC$ onto $\triangle STU$.

345 Given: Right triangle ABC with right angle at C. If $\sin A$ increases, does $\cos B$ increase or decrease? Explain why.

346 Construct an equilateral triangle inscribed in circle T shown below. [Leave all construction marks.]

347 After a reflection over a line, $\triangle A'B'C'$ is the image of $\triangle ABC$. Explain why triangle ABC is congruent to triangle $\triangle A'B'C'$.

348 The vertices of $\triangle ABC$ have coordinates $A(-2,-1)$, $B(10,-1)$, and $C(4,4)$. Determine and state the area of $\triangle ABC$. [The use of the set of axes below is optional.]

349 When volleyballs are purchased, they are not fully inflated. A partially inflated volleyball can be modeled by a sphere whose volume is approximately 180 in3. After being fully inflated, its volume is approximately 294 in3. To the nearest tenth of an inch, how much does the radius increase when the volleyball is fully inflated?
350 Write an equation of the line that is parallel to the line whose equation is $3y + 7 = 2x$ and passes through the point $(2,6)$.

351 In right triangle PRT, $\angle P = 90^\circ$, altitude PQ is drawn to hypotenuse RT, $RT = 17$, and $PR = 15$.

Determine and state, to the nearest tenth, the length of RQ.

352 To find the distance across a pond from point B to point C, a surveyor drew the diagram below. The measurements he made are indicated on his diagram.

Use the surveyor's information to determine and state the distance from point B to point C, to the nearest yard.

353 A ladder leans against a building. The top of the ladder touches the building 10 feet above the ground. The foot of the ladder is 4 feet from the building. Find, to the nearest degree, the angle that the ladder makes with the level ground.

354 In the diagram below of circle O with diameter BC and radius OA, chord DC is parallel to chord BA.

If $\angle BCD = 30^\circ$, determine and state $\angle AOB$.

355 On the set of axes below, $\triangle ABC \cong \triangle DEF$.

Describe a sequence of rigid motions that maps $\triangle ABC$ onto $\triangle DEF$.

356 In right triangle ABC with the right angle at C, $\sin A = 2x + 0.1$ and $\cos B = 4x - 0.7$. Determine and state the value of x. Explain your answer.
357 On the set of axes below, \(\triangle DEF \) has vertices at the coordinates \(D(1, -1) \), \(E(3, 4) \), and \(F(4, 2) \), and point \(G \) has coordinates \((3, 1) \). Owen claims the median from point \(E \) must pass through point \(G \). Is Owen correct? Explain why.

358 The diagram below shows a ramp connecting the ground to a loading platform 4.5 feet above the ground. The ramp measures 11.75 feet from the ground to the top of the loading platform. Determine and state, to the nearest degree, the angle of elevation formed by the ramp and the ground.

359 A support wire reaches from the top of a pole to a clamp on the ground. The pole is perpendicular to the level ground and the clamp is 10 feet from the base of the pole. The support wire makes a 68° angle with the ground. Find the length of the support wire to the nearest foot.

360 In \(\triangle CED \) as shown below, points \(A \) and \(B \) are located on sides \(CE \) and \(ED \), respectively. Line segment \(AB \) is drawn such that \(AE = 3.75 \), \(AC = 5 \), \(EB = 4.5 \), and \(BD = 6 \).

Explain why \(AB \) is parallel to \(CD \).

361 Triangles \(RST \) and \(XYZ \) are drawn below. If \(RS = 6 \), \(ST = 14 \), \(XY = 9 \), \(YZ = 21 \), and \(\angle S \cong \angle Y \), is \(\triangle RST \) similar to \(\triangle XYZ \)? Justify your answer.
362 Using a compass and straightedge, construct a regular hexagon inscribed in circle O. [Leave all construction marks.]

363 Randy's basketball is in the shape of a sphere with a maximum circumference of 29.5 inches. Determine and state the volume of the basketball, to the nearest cubic inch.

364 As graphed on the set of axes below, $\triangle A'B'C'$ is the image of $\triangle ABC$ after a sequence of transformations.

365 In parallelogram $ABCD$ shown below, diagonals AC and BD intersect at E.

![Diagram of parallelogram with diagonals AC and BD intersecting at E]

Prove: $\angle ACD \cong \angle CAB$

366 The endpoints of DEF are $D(1,4)$ and $F(16,14)$. Determine and state the coordinates of point E, if $DE:EF = 2:3$.

367 A machinist creates a solid steel part for a wind turbine engine. The part has a volume of 1015 cubic centimeters. Steel can be purchased for $0.29 per kilogram, and has a density of 7.95 g/cm3. If the machinist makes 500 of these parts, what is the cost of the steel, to the nearest dollar?

368 Skye says that the two triangles below are congruent. Margaret says that the two triangles are similar.

![Triangles with side lengths 5 cm, 12 cm, and 5 cm, and 12 cm, 13 cm, and 5 cm]

Are Skye and Margaret both correct? Explain why.
369 Determine and state the area of triangle PQR, whose vertices have coordinates $P(-2, -5)$, $Q(3, 5)$, and $R(6, 1)$. [The use of the set of axes below is optional.]

370 Given circle O with radius OA, use a compass and straightedge to construct an equilateral triangle inscribed in circle O. [Leave all construction marks.]

371 In the diagram below of circle K, secant $PLKE$ and tangent PZ are drawn from external point P.

If $m\angle LZ = 56^\circ$, determine and state the degree measure of angle P.

372 Lines AE and BD are tangent to circles O and P at A, E, B, and D, as shown in the diagram below. If $AC:CE = 5:3$, and $BD = 56$, determine and state the length of CD.

373 Find the value of R that will make the equation $\sin 73^\circ = \cos R$ true when $0^\circ < R < 90^\circ$. Explain your answer.
374 In right triangle ABC shown below, altitude CD is drawn to hypotenuse AB. Explain why $\triangle ABC \sim \triangle ACD$.

375 In the diagram below, circle O has a radius of 10.

If $m\widehat{AB} = 72^\circ$, find the area of shaded sector AOB, in terms of π.

376 In parallelogram $ABCD$ shown below, $m\angle DAC = 98^\circ$ and $m\angle ACD = 36^\circ$.

What is the measure of angle B? Explain why.

377 Describe a sequence of transformations that will map $\triangle ABC$ onto $\triangle DEF$ as shown below.

378 Triangle ABC and point $D(1,2)$ are graphed on the set of axes below.

Graph and label $\triangle A'B'C'$, the image of $\triangle ABC$, after a dilation of scale factor 2 centered at point D.
379 In the diagram below, Circle 1 has radius 4, while Circle 2 has radius 6.5. Angle A intercepts an arc of length π, and angle B intercepts an arc of length $\frac{13\pi}{8}$.

Dominic thinks that angles A and B have the same radian measure. State whether Dominic is correct or not. Explain why.

380 During an experiment, the same type of bacteria is grown in two petri dishes. Petri dish A has a diameter of 51 mm and has approximately 40,000 bacteria after 1 hour. Petri dish B has a diameter of 75 mm and has approximately 72,000 bacteria after 1 hour.

Determine and state which petri dish has the greater population density of bacteria at the end of the first hour.

381 A circle has a center at (1, -2) and radius of 4. Does the point (3.4, 1.2) lie on the circle? Justify your answer.

382 A flagpole casts a shadow 16.60 meters long. Tim stands at a distance of 12.45 meters from the base of the flagpole, such that the end of Tim's shadow meets the end of the flagpole's shadow. If Tim is 1.65 meters tall, determine and state the height of the flagpole to the nearest tenth of a meter.

383 In the diagram below, secants \overline{RST} and \overline{RQP}, drawn from point R, intersect circle O at S, T, Q, and P.

If $RS = 6$, $ST = 4$, and $RP = 15$, what is the length of RQ?

384 The diagram below shows parallelogram $LMNO$ with diagonal \overline{LN}, $m\angle M = 118^\circ$, and $m\angle LNO = 22^\circ$.

Explain why $m\angle NLO$ is 40 degrees.
385 In the model below, a support wire for a telephone pole is attached to the pole and anchored to a stake in the ground 15 feet from the base of the telephone pole. Jamal places a 6-foot wooden pole under the support wire parallel to the telephone pole, such that one end of the pole is on the ground and the top of the pole is touching the support wire. He measures the distance between the bottom of the pole and the stake in the ground.

Jamal says he can approximate how high the support wire attaches to the telephone pole by using similar triangles. Explain why the triangles are similar.

387 In the diagram below, the circle has a radius of 25 inches. The area of the unshaded sector is 500π in2.

Determine and state the degree measure of angle Q, the central angle of the shaded sector.

388 Ian needs to replace two concrete sections in his sidewalk, as modeled below. Each section is 36 inches by 36 inches and 4 inches deep. He can mix his own concrete for 3.25 per cubic foot.

How much money will it cost Ian to replace the two concrete sections?
389 In the diagram below of circle \(O \), the area of the shaded sector \(AOC \) is \(12\pi \text{ in}^2 \) and the length of \(OA \) is 6 inches. Determine and state \(m\angle AOC \).

390 Triangle \(MNP \) is the image of triangle \(JKL \) after a 120° counterclockwise rotation about point \(Q \). If the measure of angle \(L \) is 47° and the measure of angle \(N \) is 57°, determine the measure of angle \(M \). Explain how you arrived at your answer.

391 Given: Trapezoid \(JKLM \) with \(JK \parallel ML \)
Using a compass and straightedge, construct the altitude from vertex \(J \) to \(ML \). [Leave all construction marks.]

392 An airplane took off at a constant angle of elevation. After the plane traveled for 25 miles, it reached an altitude of 5 miles, as modeled below.

To the nearest tenth of a degree, what was the angle of elevation?

393 The coordinates of the endpoints of \(\overline{AB} \) are \(A(-6,-5) \) and \(B(4,0) \). Point \(P \) is on \(\overline{AB} \). Determine and state the coordinates of point \(P \), such that \(AP:PB = 2:3 \). [The use of the set of axes below is optional.]
394 Point P is on segment AB such that $AP:PB$ is 4:5. If A has coordinates (4,2), and B has coordinates (22,2), determine and state the coordinates of P.

395 The coordinates of the endpoints of AB are $A(2,3)$ and $B(5,−1)$. Determine the length of $A'B'$, the image of AB, after a dilation of $\frac{1}{2}$ centered at the origin. [The use of the set of axes below is optional.]

396 Given: Parallelogram $ABCD$ with diagonal AC drawn

Prove: $\triangle ABC \cong \triangle CDA$

397 A carpenter leans an extension ladder against a house to reach the bottom of a window 30 feet above the ground. As shown in the diagram below, the ladder makes a 70° angle with the ground. To the nearest foot, determine and state the length of the ladder.

398 The diagram below shows two figures. Figure A is a right triangular prism and figure B is an oblique triangular prism. The base of figure A has a height of 5 and a length of 8 and the height of prism A is 14. The base of figure B has a height of 8 and a length of 5 and the height of prism B is 14.

Use Cavalieri's Principle to explain why the volumes of these two triangular prisms are equal.
399 In the diagram of \(\triangle ABC \) shown below, use a compass and straightedge to construct the median to \(AB \). [Leave all construction marks.]

400 The graph below shows \(\triangle ABC \) and its image, \(\triangle A'B'C' \).

401 Triangle \(ABC \) is graphed on the set of axes below. Graph and label \(\triangle A'B'C' \), the image of \(\triangle ABC \) after a reflection over the line \(x = 1 \).

402 In the diagram of rhombus \(PQRS \) below, the diagonals \(PR \) and \(QS \) intersect at point \(T \), \(PR = 16 \), and \(QS = 30 \). Determine and state the perimeter of \(PQRS \).

403 A contractor needs to purchase 500 bricks. The dimensions of each brick are 5.1 cm by 10.2 cm by 20.3 cm, and the density of each brick is 1920 kg/m³. The maximum capacity of the contractor’s trailer is 900 kg. Can the trailer hold the weight of 500 bricks? Justify your answer.
404 Using a compass and straightedge, construct the median to side AC in $\triangle ABC$ below. [Leave all construction marks.]

405 The diagram below shows circle O with diameter AB. Using a compass and straightedge, construct a square that is inscribed in circle O. [Leave all construction marks.]

406 Triangle $A'B'C'$ is the image of triangle ABC after a dilation with a scale factor of $\frac{1}{2}$ and centered at point A. Is triangle ABC congruent to triangle $A'B'C'$? Explain your answer.

407 Given points A, B, and C, use a compass and straightedge to construct point D so that $ABCD$ is a parallelogram. [Leave all construction marks.]

408 In isosceles $\triangle MNP$, line segment NO bisects vertex $\angle MNP$, as shown below. If $MP = 16$, find the length of MO and explain your answer.

409 In the diagram below, a window of a house is 15 feet above the ground. A ladder is placed against the house with its base at an angle of 75° with the ground. Determine and state the length of the ladder to the nearest tenth of a foot.
410 On the set of axes below, $\triangle ABC$ is graphed with coordinates $A(-2, -1)$, $B(3, -1)$, and $C(-2, -4)$. Triangle QRS, the image of $\triangle ABC$, is graphed with coordinates $Q(-5, 2)$, $R(-5, 7)$, and $S(-8, 2)$.

Describe a sequence of transformations that would map $\triangle ABC$ onto $\triangle QRS$.

411 Two stacks of 23 quarters each are shown below. One stack forms a cylinder but the other stack does not form a cylinder.

Use Cavalieri’s principle to explain why the volumes of these two stacks of quarters are equal.

412 Determine and state, in terms of π, the area of a sector that intercepts a 40° arc of a circle with a radius of 4.5.

413 Quadrilateral $MATH$ and its image $M''A''T''H''$ are graphed on the set of axes below.

Describe a sequence of transformations that maps quadrilateral $MATH$ onto quadrilateral $M''A''T''H''$.

414 Using the construction below, state the degree measure of $\angle CAD$. Explain why.
415 In the diagram below, triangles XYZ and UVZ are drawn such that $\angle X \cong \angle U$ and $\angle XZY \cong \angle UZV$.

Describe a sequence of similarity transformations that shows $\triangle XYZ$ is similar to $\triangle UVZ$.

416 In parallelogram $ABCD$ shown below, the bisectors of $\angle ABC$ and $\angle DCB$ meet at E, a point on AD.

If $m\angle A = 68^\circ$, determine and state $m\angle BEC$.

418 Line ℓ is mapped onto line m by a dilation centered at the origin with a scale factor of 2. The equation of line ℓ is $3x - y = 4$. Determine and state an equation for line m.

419 Given right triangles ABC and DEF where $\angle C$ and $\angle F$ are right angles, $AC \cong DF$ and $CB \cong FE$. Describe a precise sequence of rigid motions which would show $\triangle ABC \cong \triangle DEF$.

420 In the diagram below, $\triangle ABC$ has coordinates $A(1, 1), B(4, 1)$, and $C(4, 5)$. Graph and label $\triangle A'B'C'$, the image of $\triangle ABC$ after the translation five units to the right and two units up followed by the reflection over the line $y = 0$.

417 Bob places an 18-foot ladder 6 feet from the base of his house and leans it up against the side of his house. Find, to the nearest degree, the measure of the angle the bottom of the ladder makes with the ground.
421 Using a compass and straightedge, construct the line of reflection over which triangle \(RST \) reflects onto triangle \(R'S'T' \). [Leave all construction marks.]

422 In the diagram below, tangent \(DA \) and secant \(DBC \) are drawn to circle \(O \) from external point \(D \), such that \(AC \cong BC \).

If \(m\overset{\frown}{BC} = 152^\circ \), determine and state \(m\angle D \).

423 Explain why \(\cos(x) = \sin(90 - x) \) for \(x \) such that \(0 < x < 90 \).

424 Use a compass and straightedge to construct an inscribed square in circle \(T \) shown below. [Leave all construction marks.]

425 Trapezoids \(ABCD \) and \(A''B''C''D'' \) are graphed on the set of axes below.

Describe a sequence of transformations that maps trapezoid \(ABCD \) onto trapezoid \(A''B''C''D'' \).
426 When instructed to find the length of HJ in right triangle HJG, Alex wrote the equation
\[\sin 28^\circ = \frac{HJ}{20} \]
while Marlene wrote \(\cos 62^\circ = \frac{HJ}{20} \). Are both students’ equations correct? Explain why.

427 In the diagram below of isosceles triangle ABC, $\overline{AB} \cong \overline{CB}$ and angle bisectors \overline{AD}, \overline{BF}, and \overline{CE} are drawn and intersect at X.

If $m\angle BAC = 50^\circ$, find $m\angle AXC$.

428 A regular hexagon is rotated in a counterclockwise direction about its center. Determine and state the minimum number of degrees in the rotation such that the hexagon will coincide with itself.

429 Aliyah says that when the line $4x + 3y = 24$ is dilated by a scale factor of 2 centered at the point $(3,4)$, the equation of the dilated line is $y = -\frac{4}{3}x + 16$. Is Aliyah correct? Explain why.

[The use of the set of axes below is optional.]

430 In the diagram below of $\triangle ABC$ and $\triangle XYZ$, a sequence of rigid motions maps $\angle A$ onto $\angle X$, $\angle C$ onto $\angle Z$, and \overline{AC} onto \overline{XZ}.

Determine and state whether $\overline{BC} \cong \overline{YZ}$. Explain why.
431 In the graph below, \(\triangle ABC \) has coordinates \(A(-9,2) \), \(B(-6,-6) \), and \(C(-3,-2) \), and \(\triangle RST \) has coordinates \(R(-2,9) \), \(S(5,6) \), and \(T(2,3) \).

Is \(\triangle ABC \) congruent to \(\triangle RST \)? Use the properties of rigid motions to explain your reasoning.

432 As shown in the diagram below, secants \(\overrightarrow{PWR} \) and \(\overrightarrow{PTS} \) are drawn to circle \(O \) from external point \(P \).

If \(m\angle RPS = 35^\circ \) and \(m\overarc{RS} = 121^\circ \), determine and state \(m\angle WT \).

433 In the circle below, \(\overline{AB} \) is a chord. Using a compass and straightedge, construct a diameter of the circle. [Leave all construction marks.]

434 Parallelogram \(ABCD \) is adjacent to rhombus \(DEFG \), as shown below, and \(FC \) intersects \(AGD \) at \(H \).

If \(m\angle B = 118^\circ \) and \(m\angle AHC = 138^\circ \), determine and state \(m\angle GFH \).
435 A walking path at a local park is modeled on the grid below, where the length of each grid square is 10 feet. The town needs to submit paperwork to pave the walking path. Determine and state, to the nearest square foot, the area of the walking path.

436 Quadrilaterals BIKE and GOLF are graphed on the set of axes below. Describe a sequence of transformations that maps quadrilateral BIKE onto quadrilateral GOLF.

437 Determine and state the coordinates of the center and the length of the radius of a circle whose equation is $x^2 + y^2 - 6x = 56 - 8y$.

438 As shown in the diagram below, circle A has a radius of 3 and circle B has a radius of 5.

Use transformations to explain why circles A and B are similar.
439 In circle A below, chord BC and diameter DAE intersect at F.

If $m\overarc{CD} = 46^\circ$ and $m\overarc{DB} = 102^\circ$, what is $m\angle CFE$?

440 Directed line segment PT has endpoints whose coordinates are $P(-2,1)$ and $T(4,7)$. Determine the coordinates of point J that divides the segment in the ratio 2 to 1. [The use of the set of axes below is optional.]

441 A large water basin is in the shape of a right cylinder. The inside of the basin has a diameter of $8 \frac{1}{4}$ feet and a height of 3 feet. Determine and state, to the nearest cubic foot, the number of cubic feet of water that it will take to fill the basin to a level of $\frac{1}{2}$ foot from the top.

442 In the diagram below, $\triangle ABC$ and $\triangle XYZ$ are graphed.

Use the properties of rigid motions to explain why $\triangle ABC \cong \triangle XYZ$.

443 Triangle $A'B'C'$ is the image of triangle ABC after a translation of 2 units to the right and 3 units up. Is triangle ABC congruent to triangle $A'B'C'$? Explain why.
444 In the diagram below, GI is parallel to NT, and IN intersects GT at A.

Prove: $\triangle GIA \sim \triangle TNA$

445 In square $GEOM$, the coordinates of G are $(2, -2)$ and the coordinates of O are $(-4, 2)$. Determine and state the coordinates of vertices E and M. [The use of the set of axes below is optional.]

446 Line n is represented by the equation $3x + 4y = 20$. Determine and state the equation of line p, the image of line n, after a dilation of scale factor $\frac{1}{3}$ centered at the point $(4, 2)$. [The use of the set of axes below is optional.] Explain your answer.

447 Triangle ABC and triangle DEF are drawn below.

If $AB \cong DE$, $AC \cong DF$, and $\angle A \cong \angle D$, write a sequence of transformations that maps triangle ABC onto triangle DEF.
448 A wooden cube has an edge length of 6 centimeters and a mass of 137.8 grams. Determine the density of the cube, to the nearest thousandth. State which type of wood the cube is made of, using the density table below.

<table>
<thead>
<tr>
<th>Type of Wood</th>
<th>Density (g/cm³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pine</td>
<td>0.373</td>
</tr>
<tr>
<td>Hemlock</td>
<td>0.431</td>
</tr>
<tr>
<td>Elm</td>
<td>0.554</td>
</tr>
<tr>
<td>Birch</td>
<td>0.601</td>
</tr>
<tr>
<td>Ash</td>
<td>0.638</td>
</tr>
<tr>
<td>Maple</td>
<td>0.676</td>
</tr>
<tr>
<td>Oak</td>
<td>0.711</td>
</tr>
</tbody>
</table>

449 Using a compass and straightedge, construct an altitude of triangle ABC below. [Leave all construction marks.]

450 In the diagram below, radius OA is drawn in circle O. Using a compass and a straightedge, construct a line tangent to circle O at point A. [Leave all construction marks.]
451 Given the theorem, “The sum of the measures of the interior angles of a triangle is 180°,” complete the proof for this theorem.

Given: \(\triangle ABC \)
Prove: \(m\angle 1 + m\angle 2 + m\angle 3 = 180^\circ \)
Fill in the missing reasons below.

<table>
<thead>
<tr>
<th>Statements</th>
<th>Reasons</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) (\triangle ABC)</td>
<td>(1) Given</td>
</tr>
<tr>
<td>(2) Through point (C), draw (\overline{DCE}) parallel to (\overline{AB})</td>
<td>(2) ________________</td>
</tr>
<tr>
<td>(3) (m\angle 1 = m\angle ACD), (m\angle 3 = m\angle BCE)</td>
<td>(3) ________________</td>
</tr>
<tr>
<td>(4) (m\angle ACD + m\angle 2 + m\angle BCE = 180^\circ)</td>
<td>(4) ________________</td>
</tr>
<tr>
<td>(5) (m\angle 1 + m\angle 2 + m\angle 3 = 180^\circ)</td>
<td>(5) ________________</td>
</tr>
</tbody>
</table>
452 Nick wanted to determine the length of one blade of the windmill pictured below. He stood at a point on the ground 440 feet from the windmill's base. Using surveyor's tools, Nick measured the angle between the ground and the highest point reached by the top blade and found it was 38.8°. He also measured the angle between the ground and the lowest point of the top blade, and found it was 30°.

Determine and state a blade's length, \(x \), to the nearest foot.

453 In the diagram below of circle \(O \), diameter \(AB \) and radii \(OC \) and \(OD \) are drawn. The length of \(AB \) is 12 and the measure of \(\angle COD \) is 20 degrees.

If \(AC \cong BD \), find the area of sector \(BOD \) in terms of \(\pi \).

454 In the diagram below, \(EF \) intersects \(AB \) and \(CD \) at \(G \) and \(H \), respectively, and \(GI \) is drawn such that \(GH \parallel IH \).

If \(m\angle EGB = 50^{\circ} \) and \(m\angle DIG = 115^{\circ} \), explain why \(AB \parallel CD \).

455 In the diagram below, \(\triangle ABE \cong \triangle CBD \).

Prove: \(\triangle AFD \cong \triangle CFE \)
456 Triangle ABC has vertices with $A(x, 3)$, $B(-3, -1)$, and $C(-1, -4)$. Determine and state a value of x that would make triangle ABC a right triangle. Justify why ΔABC is a right triangle. [The use of the set of axes below is optional.]

457 Trees that are cut down and stripped of their branches for timber are approximately cylindrical. A timber company specializes in a certain type of tree that has a typical diameter of 50 cm and a typical height of about 10 meters. The density of the wood is 380 kilograms per cubic meter, and the wood can be sold by mass at a rate of 4.75 per kilogram. Determine and state the minimum number of whole trees that must be sold to raise at least $50,000$.

458 Using a compass and straightedge, construct a regular hexagon inscribed in circle O below. Label it $ABCDEF$. [Leave all construction marks.]

If chords FB and FC are drawn, which type of triangle, according to its angles, would ΔFBC be? Explain your answer.

459 As shown in the diagram below, a ship is heading directly toward a lighthouse whose beacon is 125 feet above sea level. At the first sighting, point A, the angle of elevation from the ship to the light was 7°. A short time later, at point D, the angle of elevation was 16°.

To the nearest foot, determine and state how far the ship traveled from point A to point D.
460 The map of a campground is shown below. Campsite C, first aid station F, and supply station S lie along a straight path. The path from the supply station to the tower, T, is perpendicular to the path from the supply station to the campsite. The length of path FS is 400 feet. The angle formed by path TF and path FS is 72°. The angle formed by path TC and path CS is 55°.

Determine and state, to the nearest foot, the distance from the campsite to the tower.

461 A child-sized swimming pool can be modeled by a cylinder. The pool has a diameter of $6 \frac{1}{2}$ feet and a height of 12 inches. The pool is filled with water to $\frac{2}{3}$ of its height. Determine and state the volume of the water in the pool, to the nearest cubic foot. One cubic foot equals 7.48 gallons of water. Determine and state, to the nearest gallon, the number of gallons of water in the pool.

462 A candle maker uses a mold to make candles like the one shown below.

The height of the candle is 13 cm and the circumference of the candle at its widest measure is 31.416 cm. Use modeling to approximate how much wax, to the nearest cubic centimeter, is needed to make this candle. Justify your answer.

463 In the diagram below, the line of sight from the park ranger station, P, to the lifeguard chair, L, on the beach of a lake is perpendicular to the path joining the campground, C, and the first aid station, F. The campground is 0.25 mile from the lifeguard chair. The straight paths from both the campground and first aid station to the park ranger station are perpendicular.

If the path from the park ranger station to the campground is 0.55 mile, determine and state, to the nearest hundredth of a mile, the distance between the park ranger station and the lifeguard chair. Gerald believes the distance from the first aid station to the campground is at least 1.5 miles. Is Gerald correct? Justify your answer.
As modeled in the diagram below, an access ramp starts on flat ground and ends at the beginning of the top step. Each step is 6 inches tall and 8 inches deep.

If the angle of elevation of the ramp is 4.76°, determine and state the length of the ramp, to the nearest tenth of a foot. Determine and state, to the nearest tenth of a foot, the horizontal distance, \(d\), from the bottom of the stairs to the bottom of the ramp.

A homeowner is building three steps leading to a deck, as modeled by the diagram below. All three step rises, \(HA, FG,\) and \(DE\), are congruent, and all three step runs, \(HG, FE,\) and \(DC\), are congruent. Each step rise is perpendicular to the step run it joins. The measure of \(\angle CAB = 36^\circ\) and \(\angle CBA = 90^\circ\).

If each step run is parallel to \(AB\) and has a length of 10 inches, determine and state the length of each step rise, to the nearest tenth of an inch. Determine and state the length of \(AC\), to the nearest inch.

Triangle \(ABC\) has vertices at \(A(-5,2), B(-4,7),\) and \(C(-2,7)\), and triangle \(DEF\) has vertices at \(D(3,2), E(2,7),\) and \(F(0,7)\). Graph and label \(\triangle ABC\) and \(\triangle DEF\) on the set of axes below. Determine and state the single transformation where \(\triangle DEF\) is the image of \(\triangle ABC\). Use your transformation to explain why \(\triangle ABC \cong \triangle DEF\).
467 Triangle PQR has vertices $P(-3,-1)$, $Q(-1,7)$, and $R(3,3)$, and points A and B are midpoints of PQ and RQ, respectively. Use coordinate geometry to prove that AB is parallel to PR and is half the length of PR. [The use of the set of axes below is optional.]

468 Given: Quadrilateral $ABCD$ is a parallelogram with diagonals AC and BD intersecting at E

Prove: $\triangle AED \cong \triangle CEB$

Describe a single rigid motion that maps $\triangle AED$ onto $\triangle CEB$.

469 The grid below shows $\triangle ABC$ and $\triangle DEF$.

Let $\triangle A'B'C'$ be the image of $\triangle ABC$ after a rotation about point A. Determine and state the location of B' if the location of point C' is $(8,-3)$. Explain your answer. Is $\triangle DEF$ congruent to $\triangle A'B'C'$? Explain your answer.

470 Given: $\triangle XYZ$, $XY \cong YZ$, and YW bisects $\angle XYZ$

Prove that $\angle YWZ$ is a right angle.

471 The aspect ratio (the ratio of screen width to height) of a rectangular flat-screen television is $16:9$. The length of the diagonal of the screen is the television’s screen size. Determine and state, to the nearest inch, the screen size (diagonal) of this flat-screen television with a screen height of 20.6 inches.
As shown below, a canoe is approaching a lighthouse on the coastline of a lake. The front of the canoe is 1.5 feet above the water and an observer in the lighthouse is 112 feet above the water.

At 5:00, the observer in the lighthouse measured the angle of depression to the front of the canoe to be 6°. Five minutes later, the observer measured and saw the angle of depression to the front of the canoe had increased by 49°. Determine and state, to the nearest foot per minute, the average speed at which the canoe traveled toward the lighthouse.

In the diagram of \(\triangle LAC \) and \(\triangle DNC \) below, \(\overline{LA} \cong \overline{DN} \), \(\overline{CA} \cong \overline{CN} \), and \(\angle DAC \perp \angle LCN \).

473 a) Prove that \(\triangle LAC \cong \triangle DNC \).

b) Describe a sequence of rigid motions that will map \(\triangle LAC \) onto \(\triangle DNC \).

A triangle has vertices \(A(-2,4) \), \(B(6,2) \), and \(C(1,-1) \). Prove that \(\triangle ABC \) is an isosceles right triangle. [The use of the set of axes below is optional.]

A barrel of fuel oil is a right circular cylinder where the inside measurements of the barrel are a diameter of 22.5 inches and a height of 33.5 inches. There are 231 cubic inches in a liquid gallon. Determine and state, to the nearest tenth, the gallons of fuel that are in a barrel of fuel oil.
476 A bakery sells hollow chocolate spheres. The larger diameter of each sphere is 4 cm. The thickness of the chocolate of each sphere is 0.5 cm. Determine and state, to the nearest tenth of a cubic centimeter, the amount of chocolate in each hollow sphere. The bakery packages 8 of them into a box. If the density of the chocolate is 1.308 g/cm³, determine and state, to the nearest gram, the total mass of the chocolate in the box.

477 Triangle QRS is graphed on the set of axes below.

On the same set of axes, graph and label $\triangle Q'R'S'$, the image of $\triangle QRS$ after a dilation with a scale factor of $\frac{3}{2}$ centered at the origin. Use slopes to explain why $Q'R' \parallel QR$.

478 Using a straightedge and compass, construct a square inscribed in circle O below. [Leave all construction marks.]

Determine the measure of the arc intercepted by two adjacent sides of the constructed square. Explain your reasoning.

479 Given: Parallelogram $ABCD$, \overline{EFG}, and diagonal DFB

Prove: $\triangle DEF \sim \triangle BGF$
480 Keira has a square poster that she is framing and placing on her wall. The poster has a diagonal 58 cm long and fits exactly inside the frame. The width of the frame around the picture is 4 cm.

Determine and state the total area of the poster and frame to the nearest tenth of a square centimeter.

481 Triangle ABC has vertices with coordinates $A(-1,-1), B(4,0),$ and $C(0,4)$. Prove that $\triangle ABC$ is an isosceles triangle but not an equilateral triangle. [The use of the set of axes below is optional.]

Prove: BDE is the perpendicular bisector of AC.

Fill in the missing statement and reasons below.

Fill in the missing statement and reasons below.

<table>
<thead>
<tr>
<th>Statements</th>
<th>Reasons</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 $\triangle ABC$, $\triangle AEC$, $\triangle BDE$ with $\angle ABE \cong \angle CBE$, and $\angle ADE \cong \angle CDE$</td>
<td>1 Given</td>
</tr>
<tr>
<td>2 $BD \cong BD$</td>
<td>2</td>
</tr>
<tr>
<td>3 $\angle BDA$ and $\angle ADE$ are supplementary. $\angle BDC$ and $\angle CDE$ are supplementary.</td>
<td>3 Linear pairs of angles are supplementary.</td>
</tr>
<tr>
<td>4 $\triangle ABD \cong \triangle CBD$</td>
<td>4 Supplements of congruent angles are congruent.</td>
</tr>
<tr>
<td>5 $\triangle ABD \cong \triangle CBD$</td>
<td>5 ASA</td>
</tr>
<tr>
<td>6 $AD \cong CD, AB \cong CB$</td>
<td>6</td>
</tr>
<tr>
<td>7 BDE is the perpendicular bisector of AC.</td>
<td>7</td>
</tr>
</tbody>
</table>

482 Given: $\triangle ABC$, \overline{AEC}, \overline{BDE} with $\angle ABE \cong \angle CBE$, and $\angle ADE \cong \angle CDE$
483 A storage tank is in the shape of a cylinder with a hemisphere on the top. The highest point on the inside of the storage tank is 13 meters above the floor of the storage tank, and the diameter inside the cylinder is 8 meters. Determine and state, to the nearest cubic meter, the total volume inside the storage tank.

484 In the diagram below, $\triangle A'B'C'$ is the image of $\triangle ABC$ after a transformation.

485 A cargo trailer, pictured below, can be modeled by a rectangular prism and a triangular prism. Inside the trailer, the rectangular prism measures 6 feet wide and 10 feet long. The walls that form the triangular prism each measure 4 feet wide inside the trailer. The diagram below is of the floor, showing the inside measurements of the trailer.

486 Prove the sum of the exterior angles of a triangle is 360°.
487 Riley plotted $A(-1,6)$, $B(3,8)$, $C(6,-1)$, and $D(1,0)$ to form a quadrilateral. Prove that Riley's quadrilateral $ABCD$ is a trapezoid. [The use of the set of axes on the next page is optional.] Riley defines an isosceles trapezoid as a trapezoid with congruent diagonals. Use Riley's definition to prove that $ABCD$ is not an isosceles trapezoid.

488 Theresa has a rectangular pool 30 ft long, 15 ft wide, and 4 ft deep. Theresa fills her pool using city water at a rate of 3.95 per 100 gallons of water. Nancy has a circular pool with a diameter of 24 ft and a depth of 4 ft. Nancy fills her pool with a water delivery service at a rate of 200 per 6000 gallons. If Theresa and Nancy both fill their pools 6 inches from the top of the pool, determine and state who paid more to fill her pool.

\[1\text{ft}^3\text{ water} = 7.48\text{ gallons}\]

489 In the diagram below of circle O, tangent \overline{EC} is drawn to diameter \overline{AC}. Chord \overline{BC} is parallel to secant \overline{ADE}, and chord \overline{AB} is drawn.

Prove: \[\frac{BC}{CA} = \frac{AB}{EC}\]

490 Triangle ABC and triangle ADE are graphed on the set of axes below.

Describe a transformation that maps triangle ABC onto triangle ADE. Explain why this transformation makes triangle ADE similar to triangle ABC.

101
491 As modeled below, a movie is projected onto a large outdoor screen. The bottom of the 60-foot-tall screen is 12 feet off the ground. The projector sits on the ground at a horizontal distance of 75 feet from the screen.

Determine and state, to the nearest tenth of a degree, the measure of \(\theta \), the projection angle.

492 As shown in the diagram below, an island \((I)\) is due north of a marina \((M)\). A boat house \((H)\) is 4.5 miles due west of the marina. From the boat house, the island is located at an angle of 54° from the marina.

Determine and state, to the nearest tenth of a mile, the distance from the boat house \((H)\) to the island \((I)\). Determine and state, to the nearest tenth of a mile, the distance from the island \((I)\) to the marina \((M)\).

493 Triangle \(XYZ\) is shown below. Using a compass and straightedge, on the line below, construct and label \(\triangle ABC\), such that \(\triangle ABC \cong \triangle XYZ\). [Leave all construction marks.] Based on your construction, state the theorem that justifies why \(\triangle ABC\) is congruent to \(\triangle XYZ\).

494 Given: \(RS\) and \(TV\) bisect each other at point \(X\). \(TR\) and \(SV\) are drawn

Prove: \(TR \parallel SV\)
495 Using a compass and straightedge, construct and label $\triangle A'B'C'$, the image of $\triangle ABC$ after a dilation with a scale factor of 2 and centered at B. [Leave all construction marks.] Describe the relationship between the lengths of AC and $A'C'$.

496 A gas station has a cylindrical fueling tank that holds the gasoline for its pumps, as modeled below. The tank holds a maximum of 20,000 gallons of gasoline and has a length of 34.5 feet.

A metal pole is used to measure how much gas is in the tank. To the nearest tenth of a foot, how long does the pole need to be in order to reach the bottom of the tank and still extend one foot outside the tank? Justify your answer. [1 ft3=7.48 gallons]

497 In the diagram below, $AC \cong DF$ and points A, C, D, and F are collinear on line ℓ.

Let $\triangle D'E'F'$ be the image of $\triangle DEF$ after a translation along ℓ, such that point D is mapped onto point A. Determine and state the location of F'. Explain your answer. Let $\triangle D''E''F''$ be the image of $\triangle D'E'F'$ after a reflection across line ℓ. Suppose that E'' is located at B. Is $\triangle DEF$ congruent to $\triangle ABC$? Explain your answer.

498 Triangle ABC is shown below. Using a compass and straightedge, construct the dilation of $\triangle ABC$ centered at B with a scale factor of 2. [Leave all construction marks.]

Is the image of $\triangle ABC$ similar to the original triangle? Explain why.
499 In rhombus $MATH$, the coordinates of the endpoints of the diagonal MT are $M(0, -1)$ and $T(4, 6)$. Write an equation of the line that contains diagonal AH. [Use of the set of axes below is optional.] Using the given information, explain how you know that your line contains diagonal AH.

500 Shae has recently begun kickboxing and purchased training equipment as modeled in the diagram below. The total weight of the bag, pole, and unfilled base is 270 pounds. The cylindrical base is 18 inches tall with a diameter of 20 inches. The dry sand used to fill the base weighs 95.46 lbs per cubic foot.

To the nearest pound, determine and state the total weight of the training equipment if the base is filled to 85% of its capacity.
501 In the coordinate plane, the vertices of \(\triangle RST\) are \(R(6,-1)\), \(S(1,-4)\), and \(T(-5,6)\). Prove that \(\triangle RST\) is a right triangle. State the coordinates of point \(P\) such that quadrilateral \(RSTP\) is a rectangle. Prove that your quadrilateral \(RSTP\) is a rectangle. [The use of the set of axes below is optional.]

502 In the diagram of quadrilateral \(ABCD\) with diagonal \(AC\) shown below, segments \(GH\) and \(EF\) are drawn, \(AE \cong CG\), \(BE \cong DG\), \(AH \cong CF\), and \(AD \cong CB\).

Prove: \(EF \cong GH\)

503 Given: Circle \(O\), chords \(AB\) and \(CD\) intersect at \(E\)

Theorem: If two chords intersect in a circle, the product of the lengths of the segments of one chord is equal to the product of the lengths of the segments of the other chord. Prove this theorem by proving \(AE \cdot EB = CE \cdot ED\).

504 Freda, who is training to use a radar system, detects an airplane flying at a constant speed and heading in a straight line to pass directly over her location. She sees the airplane at an angle of elevation of 15° and notes that it is maintaining a constant altitude of 6250 feet. One minute later, she sees the airplane at an angle of elevation of 52°. How far has the airplane traveled, to the nearest foot? Determine and state the speed of the airplane, to the nearest mile per hour.
505 In the diagram of parallelogram $ABCD$ below, \(BE \perp CED, \ DF \perp BFC, \ CE \cong CF \).

Prove $ABCD$ is a rhombus.

506 In the coordinate plane, the vertices of triangle PAT are $P(-1,-6), \ A(-4,5),$ and $T(5,-2)$. Prove that $\triangle PAT$ is an isosceles triangle. State the coordinates of R so that quadrilateral $PART$ is a parallelogram. Prove that quadrilateral $PART$ is a parallelogram. [The use of the set of axes below is optional.]

507 The coordinates of the vertices of $\triangle ABC$ are $A(1,2), \ B(-5,3),$ and $C(-6,-3)$. Prove that $\triangle ABC$ is isosceles. State the coordinates of point D such that quadrilateral $ABCD$ is a square. Prove that your quadrilateral $ABCD$ is a square. [The use of the set of axes below is optional.]

508 Given: D is the image of A after a reflection over CH. CH is the perpendicular bisector of BCE. $\triangle ABC$ and $\triangle DEC$ are drawn.

Prove: $\triangle ABC \cong \triangle DEC$
509 A water glass can be modeled by a truncated right cone (a cone which is cut parallel to its base) as shown below.

The diameter of the top of the glass is 3 inches, the diameter at the bottom of the glass is 2 inches, and the height of the glass is 5 inches. The base with a diameter of 2 inches must be parallel to the base with a diameter of 3 inches in order to find the height of the cone. Explain why. Determine and state, in inches, the height of the larger cone.

Determine and state, to the nearest tenth of a cubic inch, the volume of the water glass.

510 In quadrilateral $ABCD$, $AB \cong CD$, $AB \parallel CD$, and BF and DE are perpendicular to diagonal AC at points F and E.

Prove: $AE \cong CF$

511 Given: Quadrilateral $MATH$, $HM \cong AT$, $HT \cong AM$, $HE \perp MEA$, and $HA \perp AT$

Prove: $TA \cdot HA = HE \cdot TH$

512 The water tower in the picture below is modeled by the two-dimensional figure beside it. The water tower is composed of a hemisphere, a cylinder, and a cone. Let C be the center of the hemisphere and let D be the center of the base of the cone.

If $AC = 8.5$ feet, $BF = 25$ feet, and $m \angle EFD = 47^\circ$, determine and state, to the nearest cubic foot, the volume of the water tower. The water tower was constructed to hold a maximum of 400,000 pounds of water. If water weighs 62.4 pounds per cubic foot, can the water tower be filled to 85% of its volume and not exceed the weight limit? Justify your answer.
513 The map below shows the three tallest mountain peaks in New York State: Mount Marcy, Algonquin Peak, and Mount Haystack. Mount Haystack, the shortest peak, is 4960 feet tall. Surveyors have determined the horizontal distance between Mount Haystack and Mount Marcy is 6336 feet and the horizontal distance between Mount Marcy and Algonquin Peak is 20,493 feet.

The angle of depression from the peak of Mount Marcy to the peak of Mount Haystack is 3.47 degrees. The angle of elevation from the peak of Algonquin Peak to the peak of Mount Marcy is 0.64 degrees. What are the heights, to the nearest foot, of Mount Marcy and Algonquin Peak? Justify your answer.

514 A snow cone consists of a paper cone completely filled with shaved ice and topped with a hemisphere of shaved ice, as shown in the diagram below. The inside diameter of both the cone and the hemisphere is 8.3 centimeters. The height of the cone is 10.2 centimeters.

The desired density of the shaved ice is 0.697 g/cm³, and the cost, per kilogram, of ice is $3.83. Determine and state the cost of the ice needed to make 50 snow cones.

515 Given: Parallelogram $ABCD$, $BF \perp AFD$, and $DE \perp BEC$

Prove: $BEDF$ is a rectangle
516 Quadrilateral $PQRS$ has vertices $P(-2,3)$, $Q(3,8)$, $R(4,1)$, and $S(-1,-4)$. Prove that $PQRS$ is a rhombus. Prove that $PQRS$ is not a square. [The use of the set of axes below is optional.]

517 New streetlights will be installed along a section of the highway. The posts for the streetlights will be 7.5 m tall and made of aluminum. The city can choose to buy the posts shaped like cylinders or the posts shaped like rectangular prisms. The cylindrical posts have a hollow core, with aluminum 2.5 cm thick, and an outer diameter of 53.4 cm. The rectangular-prism posts have a hollow core, with aluminum 2.5 cm thick, and a square base that measures 40 cm on each side. The density of aluminum is 2.7 g/cm³, and the cost of aluminum is $0.38 per kilogram. If all posts must be the same shape, which post design will cost the town less? How much money will be saved per streetlight post with the less expensive design?

518 The vertices of quadrilateral $MATH$ have coordinates $M(-4,2)$, $A(-1,-3)$, $T(9,3)$, and $H(6,8)$. Prove that quadrilateral $MATH$ is a parallelogram. Prove that quadrilateral $MATH$ is a rectangle. [The use of the set of axes below is optional.]

519 Given: Quadrilateral $ABCD$ with diagonals AC and BD that bisect each other, and $\angle 1 \cong \angle 2$.

Prove: $\triangle ACD$ is an isosceles triangle and $\triangle AEB$ is a right triangle.
520 In the diagram below, secant \overline{ACD} and tangent \overline{AB} are drawn from external point A to circle O.

Prove the theorem: If a secant and a tangent are drawn to a circle from an external point, the product of the lengths of the secant segment and its external segment equals the length of the tangent segment squared. $(AC \cdot AD = AB^2)$

521 Cathy wants to determine the height of the flagpole shown in the diagram below. She uses a survey instrument to measure the angle of elevation to the top of the flagpole, and determines it to be 34.9°. She walks 8 meters closer and determines the new measure of the angle of elevation to be 52.8°. At each measurement, the survey instrument is 1.7 meters above the ground.

Determine and state, to the nearest tenth of a meter, the height of the flagpole.

522 Isosceles trapezoid $ABCD$ has bases \overline{DC} and \overline{AB} with nonparallel legs \overline{AD} and \overline{BC}. Segments \overline{AE}, \overline{BE}, \overline{CE}, and \overline{DE} are drawn in trapezoid $ABCD$ such that $\angle CDE \cong \angle DCE$, $\overline{AE} \perp \overline{DE}$, and $\overline{BE} \perp \overline{CE}$.

Prove $\triangle ADE \cong \triangle BCE$ and prove $\triangle AEB$ is an isosceles triangle.

523 Given: Parallelogram \overline{ANDR} with \overline{AW} and \overline{DE} bisecting $\angle NWD$ and $\angle REA$ at points W and E, respectively.

Prove that $\triangle ANW \cong \triangle DRE$. Prove that quadrilateral \overline{AWDE} is a parallelogram.
524 A rectangular in-ground pool is modeled by the prism below. The inside of the pool is 16 feet wide and 35 feet long. The pool has a shallow end and a deep end, with a sloped floor connecting the two ends. Without water, the shallow end is 9 feet long and 4.5 feet deep, and the deep end of the pool is 12.5 feet long.

If the sloped floor has an angle of depression of 16.5 degrees, what is the depth of the pool at the deep end, to the nearest tenth of a foot? Find the volume of the inside of the pool to the nearest cubic foot. A garden hose is used to fill the pool. Water comes out of the hose at a rate of 10.5 gallons per minute. How much time, to the nearest hour, will it take to fill the pool 6 inches from the top? [1 ft³=7.48 gallons]

525 Walter wants to make 100 candles in the shape of a cone for his new candle business. The mold shown below will be used to make the candles. Each mold will have a height of 8 inches and a diameter of 3 inches. To the nearest cubic inch, what will be the total volume of 100 candles?

Walter goes to a hobby store to buy the wax for his candles. The wax costs $0.10 per ounce. If the weight of the wax is 0.52 ounce per cubic inch, how much will it cost Walter to buy the wax for 100 candles? If Walter spent a total of $37.83 for the molds and charges $1.95 for each candle, what is Walter's profit after selling 100 candles?
Geometry Multiple Choice Regents Exam Questions
Answer Section

1 ANS: 4

PTS: 2 REF: 061908geo TOP: Triangle Proofs
KEY: statements

2 ANS: 3

PTS: 2 REF: 081913geo TOP: Special Quadrilaterals

3 ANS: 4

\[
\sqrt{(32 - 8)^2 + (28 - 4)^2} = \sqrt{576 + 1024} = \sqrt{1600} = 40
\]

PTS: 2 REF: 081621geo TOP: Line Dilations

4 ANS: 1

PTS: 2 REF: 081919geo TOP: Cofunctions

5 ANS: 4

\[
sin x = \frac{10}{12}
\]

\[
x \approx 56
\]

PTS: 2 REF: 061922geo TOP: Using Trigonometry to Find an Angle

6 ANS: 3

\[
A = \frac{1}{2} ab\quad 3 - 6 = -3 = x
\]

\[
24 = \frac{1}{2} a(8)\quad \frac{4 + 12}{2} = 8 = y
\]

\[a = 6\]

PTS: 2 REF: 081615geo TOP: Polygons in the Coordinate Plane

7 ANS: 2

PTS: 2 REF: 011610geo TOP: Line Dilations

8 ANS: 2

PTS: 2 REF: 081602geo TOP: Identifying Transformations
KEY: basic

9 ANS: 3

PTS: 2 REF: 011904geo TOP: Mapping a Polygon onto Itself

10 ANS: 1

\[
m = \frac{2}{3}\quad 1 = \left(\frac{2}{3}\right)6 + b
\]

\[
1 = -4 + b
\]

\[5 = b\]

PTS: 2 REF: 081510geo TOP: Parallel and Perpendicular Lines
KEY: write equation of parallel line
11 ANS: 1
\[m_{RT} = \frac{5 - 3}{4 - 2} = \frac{8}{6} = \frac{4}{3} \quad m_{ST} = \frac{5 - 2}{4 - 8} = \frac{3}{-4} = \frac{-3}{4} \]
Slopes are opposite reciprocals, so lines form a right angle.

PTS: 2 REF: 011618geo TOP: Triangles in the Coordinate Plane
12 ANS: 4 PTS: 2 REF: 061615geo TOP: Trigonometric Ratios
13 ANS: 3

PTS: 2 REF: 011603geo TOP: Interior and Exterior Angles of Polygons
14 ANS: 2 PTS: 2 REF: 081519geo TOP: Similarity
KEY: basic
15 ANS: 1
The man’s height, 69 inches, is opposite to the angle of elevation, and the shadow length, 102 inches, is adjacent to the angle of elevation. Therefore, tangent must be used to find the angle of elevation.
\[\tan x = \frac{69}{102} \]
\[x \approx 34.1 \]

PTS: 2 REF: fall1401geo TOP: Using Trigonometry to Find an Angle
16 ANS: 4
\[x^2 + 8x + 16 + y^2 - 12y + 36 = 144 + 16 + 36 \]
\[(x + 4)^2 + (y - 6)^2 = 196 \]

PTS: 2 REF: 061920geo TOP: Equations of Circles
KEY: completing the square
17 ANS: 3

PTS: 2 REF: 081905geo TOP: Exterior Angle Theorem
18 ANS: 4 PTS: 2 REF: 081503geo TOP: Rotations of Two-Dimensional Objects
19 ANS: 3
\[\theta = \frac{\theta}{r} = \frac{2\pi}{10} = \frac{\pi}{5} \]

PTS: 2 REF: fall1404geo TOP: Arc Length KEY: angle
20 ANS: 1
5x = 12 \cdot 7 \quad 16.8 + 7 = 23.8
5x = 84
x = 16.8

PTS: 2 \quad REF: 061911geo \quad TOP: Side Splitter Theorem

21 ANS: 2

PTS: 2 \quad REF: 061912geo \quad TOP: Interior and Exterior Angles of Polygons

22 ANS: 3
(3) Could be a trapezoid.

PTS: 2 \quad REF: 081607geo \quad TOP: Parallelograms

23 ANS: 4

PTS: 2 \quad REF: 011607geo \quad TOP: Volume \quad KEY: pyramids

24 ANS: 4

PTS: 2 \quad REF: 061504geo \quad TOP: Compositions of Transformations
KEY: identify

25 ANS: 1

PTS: 2 \quad REF: 061505geo \quad TOP: Chords, Secants and Tangents
KEY: mixed

26 ANS: 2

\[V = \frac{1}{3} \cdot 6^2 \cdot 12 = 144 \]

PTS: 2 \quad REF: 061520geo \quad TOP: Volume \quad KEY: pyramids

27 ANS: 4

\[-8 + \frac{2}{3} (10 - 8) = -8 + \frac{2}{3} (18) = -8 + 12 = 4 \quad 4 + \frac{2}{3} (2 - 4) = 4 + \frac{2}{3} (-6) = 4 - 4 = 0 \]

PTS: 2 \quad REF: 061919geo \quad TOP: Directed Line Segments

28 ANS: 2

PTS: 2 \quad REF: 061603geo \quad TOP: Equations of Circles
KEY: find center and radius | completing the square

29 ANS: 3

PTS: 2 \quad REF: 011621geo \quad TOP: Chords, Secants and Tangents
KEY: inscribed

30 ANS: 2

PTS: 2 \quad REF: 081601geo \quad TOP: Lines and Angles

31 ANS: 1

PTS: 2 \quad REF: 011922geo \quad TOP: Cofunctions

32 ANS: 1

\[\frac{4}{6} = \frac{3}{4.5} = \frac{2}{3} \]
33 ANS: 4
The line \(y = 3x - 1 \) passes through the center of dilation, so the dilated line is not distinct.

PTS: 2 REF: 081524geo TOP: Line Dilations

34 ANS: 3
\[
\frac{10}{x} = \frac{15}{12}
\]
\[
x = 8
\]

PTS: 2 REF: 081918geo TOP: Similarity KEY: basic

35 ANS: 3
\[
\frac{4}{3} \pi \left(\frac{9.5}{2} \right)^3
\]
\[
\frac{4}{3} \pi \left(\frac{2.5}{2} \right)^3 \approx 55
\]

PTS: 2 REF: 011614geo TOP: Volume KEY: spheres

36 ANS: 1 PTS: 2 REF: 011918geo TOP: Compositions of Polygons and Circles KEY: area

37 ANS: 1
1) opposite sides; 2) adjacent sides; 3) perpendicular diagonals; 4) diagonal bisects angle

PTS: 2 REF: 061609geo TOP: Special Quadrilaterals

38 ANS: 2
\[
s^2 + s^2 = 7^2
\]
\[
2s^2 = 49
\]
\[
s^2 = 24.5
\]
\[
s \approx 4.9
\]

PTS: 2 REF: 081511geo TOP: Inscribed Quadrilaterals

39 ANS: 2
The given line \(h, 2x + y = 1 \), does not pass through the center of dilation, the origin, because the \(y \)-intercept is at \((0, 1)\). The slope of the dilated line, \(m \), will remain the same as the slope of line \(h \), -2. All points on line \(h \), such as \((0, 1)\), the \(y \)-intercept, are dilated by a scale factor of 4; therefore, the \(y \)-intercept of the dilated line is \((0, 4)\) because the center of dilation is the origin, resulting in the dilated line represented by the equation \(y = -2x + 4 \).

PTS: 2 REF: spr1403geo TOP: Line Dilations
40 ANS: 4
\[x^2 - 8x + y^2 + 6y = 39 \]
\[x^2 - 8x + 16 + y^2 + 6y + 9 = 39 + 16 + 9 \]
\[(x - 4)^2 + (y + 3)^2 = 64 \]
PTS: 2 REASON: 081906geo TOP: Equations of Circles
KEY: completing the square

41 ANS: 1 PTS: 2 REASON: 061604geo TOP: Identifying Transformations
KEY: graphics

42 ANS: 2
\[x \text{ is } \frac{1}{2} \text{ the circumference. } \frac{C}{2} = \frac{10\pi}{2} \approx 16 \]
PTS: 2 REASON: 061523geo TOP: Circumference

43 ANS: 1
\[(x - 1)^2 + (y - 4)^2 = \left(\frac{10}{2}\right)^2 \]
\[x^2 - 2x + 1 + y^2 - 8y + 16 = 25 \]
\[x^2 - 2x + y^2 - 8y = 8 \]
PTS: 2 REASON: 011920geo TOP: Equations of Circles
KEY: write equation, given center and radius

44 ANS: 1
\[\frac{360^\circ}{45^\circ} = 8 \]
PTS: 2 REASON: 061510geo TOP: Mapping a Polygon onto Itself

45 ANS: 1
\[m = \left(\frac{-11 + 5}{2}, \frac{5 + -7}{2}\right) = (-3,-1) \]
\[m = \frac{5 - -7}{-11 - -5} = \frac{12}{6} = \frac{2}{1} \]
\[m = \frac{4}{3} \]
PTS: 2 REASON: 061612geo TOP: Parallel and Perpendicular Lines
KEY: perpendicular bisector

46 ANS: 3 PTS: 2 REASON: 081515geo TOP: Inscribed Quadrilaterals

47 ANS: 4
The slope of \(BC \) is \(\frac{2}{5} \). Altitude is perpendicular, so its slope is \(\frac{5}{2} \).
PTS: 2 REASON: 061614geo TOP: Triangles in the Coordinate Plane
The line \(y = \frac{3}{2}x - 4 \) does not pass through the center of dilation, so the dilated line will be distinct from \(y = \frac{3}{2}x - 4 \). Since a dilation preserves parallelism, the line \(y = \frac{3}{2}x - 4 \) and its image will be parallel, with slopes of \(\frac{3}{2} \). To obtain the \(y \)-intercept of the dilated line, the scale factor of the dilation, \(\frac{3}{4} \), can be applied to the \(y \)-intercept, \((0, -4)\). Therefore, \(\left(0 \cdot \frac{3}{4}, -4 \cdot \frac{3}{4} \right) \rightarrow (0, -3) \). So the equation of the dilated line is \(y = \frac{3}{2}x - 3 \).
55 ANS: 2
\[\tan 11.87 = \frac{x}{0.5(5280)} \]
\[x \approx 555 \]

PTS: 2 REF: 011913geo TOP: Using Trigonometry to Find a Side

56 ANS: 3
\[8 \cdot 15 = 16 \cdot 7.5 \]

PTS: 2 REF: 061913geo TOP: Chords, Secants and Tangents
KEY: intersecting chords, length

57 ANS: 4
\[x^2 + 6x + 9 + y^2 - 4y + 4 = 23 + 9 + 4 \]
\[(x + 3)^2 + (y - 2)^2 = 36 \]

PTS: 2 REF: 011617geo TOP: Equations of Circles
KEY: completing the square

58 ANS: 2 PTS: 2 REF: 011912geo TOP: Parallelograms

59 ANS: 1 PTS: 2 REF: 011608geo TOP: Compositions of Transformations
KEY: identify

60 ANS: 2 PTS: 2 REF: 061903geo TOP: Rotations of Two-Dimensional Objects
KEY: identify

61 ANS: 3 PTS: 2 REF: 011903geo TOP: Compositions of Transformations
KEY: identify

62 ANS: 3 PTS: 2 REF: 061924geo TOP: Special Quadrilaterals

63 ANS: 3
\[\frac{AB}{BC} = \frac{DE}{EF} \]
\[\frac{9}{15} = \frac{6}{10} \]
\[90 = 90 \]

PTS: 2 REF: 061515geo TOP: Similarity KEY: basic

64 ANS: 2
\[x^2 = 4 \cdot 10 \]
\[x = \sqrt{40} \]
\[x = 2\sqrt{10} \]

PTS: 2 REF: 081610geo TOP: Similarity KEY: leg
65 ANS: 1
\[
\frac{f}{4} = \frac{15}{6} \\
\Rightarrow f = 10
\]

PTS: 2 REF: 061617geo TOP: Lines and Angles

66 ANS: 1
\[180 - (68 \cdot 2)\]

PTS: 2 REF: 081624geo TOP: Interior and Exterior Angles of Polygons

67 ANS: 1
\[\triangle ABC \sim \triangle RST\]

PTS: 2 REF: 011908geo TOP: Similarity KEY: basic

68 ANS: 2

PTS: 2 REF: 081907geo TOP: Interior and Exterior Angles of Polygons

69 ANS: 3
1) only proves AA; 2) need congruent legs for HL; 3) SAS; 4) only proves product of altitude and base is equal

PTS: 2 KEY: statements REF: 061607geo TOP: Triangle Proofs

70 ANS: 4
PTS: 2 REF: 061901geo TOP: Compositions of Transformations KEY: identify

71 ANS: 4
PTS: 2 REF: 061512geo TOP: Cofunctions

72 ANS: 1
\[\frac{1}{2} \left(\frac{4}{3} \right) \pi \cdot 5^2 \cdot 62.4 \approx 16,336\]

PTS: 2 REF: 061620geo TOP: Density

73 ANS: 3
\[12^2 = 9 \cdot GM \quad IM^2 = 16 \cdot 25\]
\[GM = 16 \quad IM = 20\]

PTS: 2 REF: 011910geo TOP: Similarity KEY: leg

74 ANS: 2
PTS: 2 REF: 081901geo TOP: Line Dilations
75 \text{ ANS: 2} \\
\text{SA} = 6 \cdot 12^2 = 864 \\
\frac{864}{450} = 1.92 \\
\text{PTS: 2} \quad \text{REF: 061519geo} \quad \text{TOP: Surface Area} \\

76 \text{ ANS: 3} \\
\sqrt{45} = 3\sqrt{5} \quad a = \frac{1}{2} \left(3\sqrt{5} \right) \left(6\sqrt{5} \right) = \frac{1}{2} (18)(5) = 45 \\
\sqrt{180} = 6\sqrt{5} \\
\text{PTS: 2} \quad \text{REF: 061622geo} \quad \text{TOP: Polygons in the Coordinate Plane} \\

77 \text{ ANS: 3} \\
\frac{x}{10} = \frac{6}{4} \quad \overline{CD} = 15 - 4 = 11 \\
x = 15 \\
\text{PTS: 2} \quad \text{REF: 081612geo} \quad \text{TOP: Similarity} \quad \text{KEY: basic} \\

78 \text{ ANS: 3} \\
\text{PTS: 2} \quad \text{REF: 081508geo} \quad \text{TOP: Interior and Exterior Angles of Polygons} \\

79 \text{ ANS: 4} \quad \text{PTS: 2} \quad \text{REF: 081609geo} \quad \text{TOP: Compositions of Transformations} \quad \text{KEY: grids} \\

80 \text{ ANS: 1} \quad \text{PTS: 2} \quad \text{REF: 061518geo} \quad \text{TOP: Line Dilations} \\

81 \text{ ANS: 2} \\
The slope of \(-3x + 4y = 8\) is \(\frac{3}{4}\). \\
\text{PTS: 2} \quad \text{REF: 061907geo} \quad \text{TOP: Line Dilations}
82 ANS: 3
\[
\frac{x}{360} \cdot 3^2 \pi = 2\pi \quad 180 - 80 = 100
\]
\[
x = 80 \quad \frac{180 - 100}{2} = 40
\]

PTS: 2 REF: 011612geo TOP: Sectors

83 ANS: 1
\[
-1 + \frac{1}{3} (8 - 1) = -1 + \frac{1}{3} (9) = -1 + 3 = 2 \quad -3 + \frac{1}{3} (9 - 3) = -3 + \frac{1}{3} (12) = -3 + 4 = 1
\]

PTS: 2 REF: 011915geo TOP: Directed Line Segments

84 ANS: 1
The line 3y = -2x + 8 does not pass through the center of dilation, so the dilated line will be distinct from 3y = -2x + 8. Since a dilation preserves parallelism, the line 3y = -2x + 8 and its image 2x + 3y = 5 are parallel, with slopes of \(\frac{2}{3}\).

PTS: 2 REF: 061522geo TOP: Line Dilations

85 ANS: 4 PTS: 2 REF: 081922geo TOP: Chords, Secants and Tangents
KEY: intersecting chords, length

86 ANS: 1
\[
\frac{1000}{20\pi} \approx 15.9
\]

PTS: 2 REF: 011623geo TOP: Circumference

87 ANS: 1
\[
\cos 65 = \frac{x}{15}
\]
\[
x \approx 6.3
\]

PTS: 2 REF: 081924geo TOP: Using Trigonometry to Find a Side

88 ANS: 2
\[
14 \times 16 \times 10 = 2240 \quad \frac{2240 - 1680}{2240} = 0.25
\]

PTS: 2 REF: 011604geo TOP: Volume KEY: prisms

89 ANS: 4 PTS: 2 REF: 061501geo TOP: Rotations of Two-Dimensional Objects

90 ANS: 1 PTS: 2 REF: 081606geo TOP: Cofunctions

91 ANS: 4 PTS: 2 REF: 011921geo TOP: Triangles in the Coordinate Plane
92 ANS: 3
\[\tan 34 = \frac{T}{20} \]
\[T \approx 13.5 \]

PTS: 2 REF: 061505geo TOP: Using Trigonometry to Find a Side
KEY: graphics

93 ANS: 3
\[5 \cdot \frac{10}{4} = \frac{50}{4} = 12.5 \]

PTS: 2 REF: 081512geo TOP: Chords, Secants and Tangents
KEY: common tangents

94 ANS: 4 PTS: 2 REF: 061608geo TOP: Compositions of Transformations
KEY: grids

95 ANS: 2
\[\tan 36 = \frac{x}{8} \quad 5.8 + 1.5 \approx 7 \]
\[x \approx 5.8 \]

PTS: 2 REF: 081915geo TOP: Using Trigonometry to Find a Side

96 ANS: 4
\[\frac{-2-1}{-1-3} = \frac{-3}{2} \quad \frac{3-2}{0-5} = \frac{-1}{-5} \quad \frac{3-1}{0-3} = \frac{2}{3} \quad \frac{2-2}{5-1} = \frac{4}{6} = \frac{2}{3} \]

PTS: 2 REF: 081522geo TOP: Quadrilaterals in the Coordinate Plane
KEY: general

97 ANS: 2 PTS: 2 REF: 061506geo TOP: Cross-Sections of Three-Dimensional Objects

98 ANS: 3 PTS: 2 REF: 011911geo TOP: Rotations of Two-Dimensional Objects

99 ANS: 3 PTS: 2 REF: 081613geo TOP: Cross-Sections of Three-Dimensional Objects

100 ANS: 4
d) is SSA

PTS: 2 REF: 061914geo TOP: Triangle Congruency

101 ANS: 3
\[V = 12 \cdot 8.5 \cdot 4 = 408 \]
\[W = 408 \cdot 0.25 = 102 \]

PTS: 2 REF: 061507geo TOP: Density

102 ANS: 3 PTS: 2 REF: 061616geo TOP: Identifying Transformations
KEY: graphics
103 ANS: 2
\[
\frac{12}{4} = \frac{36}{x}
\]
\[12x = 144\]
\[x = 12\]

PTS: 2 REF: 061621geo TOP: Side Splitter Theorem

104 ANS: 1
Alternate interior angles

PTS: 2 REF: 061517geo TOP: Lines and Angles

105 ANS: 2
Segments drawn from the center of the regular pentagon bisect each angle of the pentagon, and create five isosceles triangles as shown in the diagram below. Since each exterior angle equals the angles formed by the segments drawn from the center of the regular pentagon, the minimum degrees necessary to carry a regular polygon onto itself are equal to the measure of an exterior angle of the regular polygon.

PTS: 2 REF: spr1402geo TOP: Mapping a Polygon onto Itself

106 ANS: 4 PTS: 2 REF: 081911geo TOP: Rotations of Two-Dimensional Objects

107 ANS: 2 PTS: 2 REF: 061610geo TOP: Chords, Secants and Tangents
KEY: inscribed

108 ANS: 3
\[
\sqrt{40^2 - \left(\frac{64}{2}\right)^2} = 24 \quad V = \frac{1}{3} (64)^2 \cdot 24 = 32768
\]

PTS: 2 REF: 081921geo TOP: Volume KEY: pyramids

109 ANS: 4
\[
\frac{18}{4.5} = 4
\]

PTS: 2 REF: 011901geo TOP: Line Dilations

110 ANS: 1
\[
x^2 - 4x + 4 + y^2 + 8y + 16 = -11 + 4 + 16
\]
\[(x - 2)^2 + (y + 4)^2 = 9
\]

PTS: 2 REF: 081616geo TOP: Equations of Circles
KEY: completing the square
111 ANS: 4
\[\frac{1}{2} = \frac{x+3}{3x-1} \quad GR = 3(7) - 1 = 20 \]

\[3x - 1 = 2x + 6 \]

\[x = 7 \]

PTS: 2 REF: 011620geo TOP: Similarity KEY: basic

112 ANS: 2
\[C = \pi d \quad V = \pi \left(\frac{2.25}{\pi} \right)^2 \cdot 8 \approx 12.8916 \quad W = 12.8916 \cdot 752 \approx 9694 \]

\[4.5 = \pi d \]

\[\frac{4.5}{\pi} = d \]

\[\frac{2.25}{\pi} = r \]

PTS: 2 REF: 081617geo TOP: Density

113 ANS: 2
\[m = \frac{-(2)}{3} = \frac{2}{3} \]

PTS: 2 REF: 061916geo TOP: Parallel and Perpendicular Lines KEY: write equation of parallel line

114 ANS: 2
\[ER = \sqrt{17^2 - 8^2} = 15 \]

PTS: 2 REF: 061917geo TOP: Special Quadrilaterals

115 ANS: 1
\[h = \sqrt{6.5^2 - 2.5^2} = 6, \quad V = \frac{1}{3} \pi (2.5)^2 \cdot 6 = 12.5\pi \]

PTS: 2 REF: 011923geo TOP: Volume KEY: cones

116 ANS: 4
\[(8 \times 2) + (3 \times 2) - \left(\frac{18}{12} \times \frac{21}{12} \right) \approx 19 \]

PTS: 2 REF: 081917geo TOP: Compositions of Polygons and Circles KEY: area

117 ANS: 2
\[V = \frac{1}{3} (8)^2 \cdot 6 = 128 \]

PTS: 2 REF: 061906geo TOP: Volume KEY: pyramids
118 ANS: 4
3 \times 6 = 18

PTS: 2 REF: 061602geo TOP: Line Dilations

119 ANS: 4 PTS: 2 REF: 061904geo TOP: Mapping a Polygon onto Itself

120 ANS: 1 PTS: 2 REF: 081904geo
TOP: Centroid, Orthocenter, Incenter and Circumcenter

121 ANS: 4 PTS: 2 REF: 081611geo TOP: Lines and Angles

122 ANS: 1 PTS: 2 REF: 011601geo
TOP: Cross-Sections of Three-Dimensional Objects

123 ANS: 4
2592276 = \frac{1}{3} \cdot s^2 \cdot 146.5
230 \approx s

PTS: 2 REF: 081521geo TOP: Volume KEY: pyramids

124 ANS: 1
3^2 = 9

PTS: 2 REF: 081520geo TOP: Dilations

125 ANS: 4 PTS: 2 REF: 081506geo TOP: Dilations

126 ANS: 4 PTS: 2 REF: 011916geo TOP: Exterior Angle Theorem

127 ANS: 1 PTS: 2 REF: 011606geo TOP: Lines and Angles

128 ANS: 3
1) \frac{12}{9} = \frac{4}{3} 2) AA 3) \frac{32}{16} \neq \frac{8}{2} 4) SAS

PTS: 2 REF: 081605geo TOP: Similarity KEY: basic

129 ANS: 3
x^2 + 4x + 4 + y^2 - 6y + 9 = 12 + 4 + 9
(x + 2)^2 + (y - 3)^2 = 25

PTS: 2 REF: 081509geo TOP: Equations of Circles
KEY: completing the square

130 ANS: 1
\frac{9}{6} = \frac{3}{2}

PTS: 2 REF: 061905geo TOP: Line Dilations

131 ANS: 4 PTS: 2 REF: 061502geo TOP: Identifying Transformations
KEY: basic

132 ANS: 3
\frac{60}{360} \cdot 8^2 \pi = \frac{1}{6} \cdot 64\pi = \frac{32\pi}{3}

PTS: 2 REF: 061624geo TOP: Sectors
133 ANS: 1 PTS: 2 REF: 081505geo TOP: Mapping a Polygon onto Itself
134 ANS: 1 PTS: 2 REF: 081605geo TOP: Rotations

KEY: grids

135 ANS: 2

\[\frac{4}{3} \pi \left(\frac{1.68}{2} \right)^3 \times 0.6523 \approx 1.62 \]

PTS: 2 REF: 081914geo TOP: Density

136 ANS: 4

\[\frac{2}{6} = \frac{5}{15} \]

PTS: 2 REF: 081517geo TOP: Side Splitter Theorem

137 ANS: 3 PTS: 2 REF: 081502geo TOP: Identifying Transformations

KEY: basic

138 ANS: 1 PTS: 2 REF: 081916geo TOP: Similarity

KEY: leg

139 ANS: 3

\[\frac{12}{4} = \frac{x}{5} \]

\[15 - 4 = 11 \]

\[x = 15 \]

PTS: 2 REF: 011624geo TOP: Similarity KEY: basic

140 ANS: 2 PTS: 2 REF: 081619geo TOP: Sectors

141 ANS: 2

PTS: 2 REF: 081604geo TOP: Interior and Exterior Angles of Triangles

142 ANS: 2

PTS: 2 REF: 061619geo TOP: Triangle Proofs
143 ANS: 2
\[18^2 = 12(x + 12)\]
\[324 = 12(x + 12)\]
\[27 = x + 12\]
\[x = 15\]
PTS: 2 REF: 081920geo TOP: Similarity KEY: leg

144 ANS: 4
\[V = \pi \left(\frac{6.7}{2} \right)^2 (4 \cdot 6.7) \approx 945\]
PTS: 2 REF: 081620geo TOP: Volume KEY: cylinders

145 ANS: 1
\[\frac{6}{9} = \frac{2}{3}\]
PTS: 2 REF: 011613geo TOP: Similarity KEY: basic

146 ANS: 2
\[\sqrt{3 \cdot 21} = \sqrt{63} = 3\sqrt{7}\]
PTS: 2 REF: 011622geo TOP: Similarity KEY: altitude

147 ANS: 2
\[90 - 57 = 33\]
PTS: 2 REF: 061909geo TOP: Cofunctions

148 ANS: 3
PTS: 2 REF: 061524geo TOP: Triangle Congruency

149 ANS: 1
\[V = \frac{1}{2} \times \frac{4}{3} \pi r^3 = \frac{1}{2} \times \frac{4}{3} \pi \left(\frac{12.6}{2} \right)^3 \approx 523.7\]
PTS: 2 REF: 061910geo TOP: Volume KEY: spheres

150 ANS: 2
\[\sqrt{8^2 + 6^2} = 10\text{ for one side}\]
PTS: 2 REF: 011907geo TOP: Special Quadrilaterals

151 ANS: 1
PTS: 2 REF: 081504geo TOP: Cofunctions

152 ANS: 2
\[\frac{x}{360} (15)^2 \pi = 75\pi\]
\[x = 120\]
PTS: 2 REF: 011914geo TOP: Sectors
153 ANS: 3 PTS: 2 REF: 081622geo TOP: Triangle Proofs
KEY: statements

154 ANS: 1

\[V = \frac{4}{3} \pi \left(\frac{10}{2} \right)^3 \]
\[\approx 261.8 \cdot 62.4 = 16336 \]

PTS: 2 REF: 081516geo TOP: Density

155 ANS: 3

\[r = \sqrt{(7 - 3)^2 + (1 - -2)^2} = \sqrt{16 + 9} = 5 \]

PTS: 2 REF: 061503geo TOP: Circles in the Coordinate Plane

156 ANS: 1

The other statements are true only if \(AD \perp BC \).

PTS: 2 REF: 081623geo TOP: Chords, Secants and Tangents
KEY: inscribed

157 ANS: 3

\(\angle N \) is the smallest angle in \(\triangle NYA \), so side \(\overline{AY} \) is the shortest side of \(\triangle NYA \). \(\angle VYA \) is the smallest angle in \(\triangle VYA \), so side \(\overline{VA} \) is the shortest side of both triangles.

PTS: 2 REF: 011919geo TOP: Angle Side Relationship

158 ANS: 1

A dilation by a scale factor of 4 centered at the origin preserves parallelism and \((0,-2) \rightarrow (0,-8)\).

PTS: 2 REF: 081910geo TOP: Line Dilations
KEY: general

159 ANS: 3

\[M_x = \frac{-5 + -1}{2} = -3 \]
\[M_y = \frac{5 + -1}{2} = 2 \]

PTS: 2 REF: 081902geo TOP: Quadrilaterals in the Coordinate Plane
KEY: general

160 ANS: 4

\[2x - 1 = 16 \]
\[x = 8.5 \]

PTS: 2 REF: 011902geo TOP: Properties of Transformations
KEY: graphics

161 ANS: 2

\[\frac{4}{3} \pi \cdot 4^3 + 0.075 \approx 20 \]

PTS: 2 REF: 011619geo TOP: Density
162 ANS: 4
\[-5 + \frac{3}{5}(5 - 5) - 4 + \frac{3}{5}(1 - 4)\]
\[-5 + \frac{3}{5}(10) - 4 + \frac{3}{5}(5)\]
\[-5 + 6 - 4 + 3\]
\[1 - 1\]

PTS: 2 REF: spr1401geo TOP: Directed Line Segments

163 ANS: 3
\[\frac{60}{360} \cdot 6^2 \pi = 6\pi\]

PTS: 2 REF: 081518geo TOP: Sectors

164 ANS: 4
The measures of the angles of a triangle remain the same after all rotations because rotations are rigid motions which preserve angle measure.

PTS: 2 REF: fall1402geo TOP: Properties of Transformations

165 ANS: 3 PTS: 2 REF: 061601geo TOP: Rotations of Two-Dimensional Objects

166 ANS: 1 PTS: 2 REF: 061508geo TOP: Chords, Secants and Tangents

167 ANS: 4
\[x = -6 + \frac{1}{6}(6 - 6) = -6 + 2 = -4\]
\[y = -2 + \frac{1}{6}(7 - 2) = -2 + \frac{9}{6} = -\frac{1}{2}\]

PTS: 2 REF: 081618geo TOP: Directed Line Segments

168 ANS: 1

Since the midpoint of \(AB\) is \((3, -2)\), the center must be either \((5, -2)\) or \((1, -2)\).

\[r = \sqrt{2^2 + 5^2} = \sqrt{29}\]

PTS: 2 REF: 061623geo TOP: Equations of Circles

KEY: other
169 ANS: 1
\[m = \frac{-A}{B} = \frac{-3}{2} \quad m_\perp = \frac{2}{3} \]

PTS: 2
KEY: identify perpendicular lines
TOP: Parallel and Perpendicular Lines

170 ANS: 4
PTS: 2
KEY: graphics
TOP: Properties of Transformations

171 ANS: 1
\[m_{TA} = -1 \quad y = mx + b \]
\[m_{EM} = 1 \quad 1 = 1(2) + b \]
\[-1 = b \]

PTS: 2
KEY: Quadrilaterals in the Coordinate Plane
TOP: Equations of Circles

172 ANS: 3
PTS: 2
KEY: general
TOP: Parallelograms

173 ANS: 3
\[\sqrt{20^2 - 10^2} \approx 17.3 \]

PTS: 2
KEY: completing the square
TOP: Volume

174 ANS: 2
\[x^2 + y^2 + 6y + 9 = 7 + 9 \]
\[x^2 + (y + 3)^2 = 16 \]

PTS: 2
KEY: compositions
TOP: Side Splitter Theorem

175 ANS: 2
\[8 \times 8 \times 9 + \frac{1}{3} (8 \times 8 \times 3) = 640 \]

PTS: 2
KEY: compositions
TOP: Side Splitter Theorem

176 ANS: 2
\[\sqrt{(-1 - 2)^2 + (4 - 3)^2} = \sqrt{10} \]

PTS: 2
KEY: compositions
TOP: Side Splitter Theorem

177 ANS: 4
PTS: 2
TOP: Parallelograms

178 ANS: 3
\[\frac{9}{5} = \frac{9.2}{x} \quad 5.1 + 9.2 = 14.3 \]
\[9x = 46 \]
\[x \approx 5.1 \]

PTS: 2
TOP: Side Splitter Theorem
The line \(y = 2x - 4 \) does not pass through the center of dilation, so the dilated line will be distinct from \(y = 2x - 4 \). Since a dilation preserves parallelism, the line \(y = 2x - 4 \) and its image will be parallel, with slopes of 2. To obtain the \(y \)-intercept of the dilated line, the scale factor of the dilation, \(\frac{3}{2} \), can be applied to the \(y \)-intercept, \((0, -4)\). Therefore, \(\left(0, \frac{3}{2}, -4 \cdot \frac{3}{2}\right) \rightarrow (0, -6) \). So the equation of the dilated line is \(y = 2x - 6 \).
\[m = \frac{-A}{B} = \frac{-2}{-1} = 2 \]
\[m_\perp = \frac{-1}{2} \]

Key: identify perpendicular lines

Points: 2

Reference: 061509geo

Topic: Parallel and Perpendicular Lines

\[h^2 = 30 \cdot 12 \]

\[h^2 = 360 \]

\[h = 6\sqrt{10} \]

Points: 2

Reference: 061606geo

Topic: Volume

Key: compositions

\[(\frac{360 - 120}{360})(\pi)(9^2) = 54\pi \]

Points: 2

Reference: 081613geo

Topic: Similarity

Key: altitude

\[-9 + \frac{1}{3}(9 - 9) = -9 + \frac{1}{3}(18) = -9 + 6 = -3 \]

\[8 + \frac{1}{3}(-4 - 8) = 8 + \frac{1}{3}(-12) = 8 - 4 = 4 \]

Points: 2

Reference: 081903geo

Topic: Directed Line Segments

Points: 2

Reference: 081501geo

Topic: Special Quadrilaterals
Geometry Multiple Choice Regents Exam Questions
Answer Section

197 ANS: 1

\[x^2 + y^2 - 12y + 36 = -20 + 36 \]
\[x^2 + (y - 6)^2 = 16 \]

PTS: 2 REF: 061712geo TOP: Equations of Circles
KEY: completing the square

198 ANS: 2

\[12^2 = 9 \cdot 16 \]
\[144 = 144 \]

PTS: 2 REF: 081718geo TOP: Similarity KEY: leg

199 ANS: 4

\[\frac{360^\circ}{10} = 36^\circ \ 252^\circ \text{ is a multiple of } 36^\circ \]

PTS: 2 REF: 011717geo TOP: Mapping a Polygon onto Itself

200 ANS: 4 PTS: 2 REF: 011808geo
TOP: Analytical Representations of Transformations KEY: basic

201 ANS: 4 PTS: 2 REF: 011803geo TOP: Identifying Transformations
KEY: graphics

202 ANS: 1

\[M \text{ is a centroid, and cuts each median } 2:1. \]

PTS: 2 REF: 061818geo TOP: Centroid, Orthocenter, Incenter and Circumcenter

203 ANS: 2

PTS: 2 REF: 081814geo TOP: Chords, Secants and Tangents
KEY: tangents drawn from common point, length

204 ANS: 3 PTS: 2 REF: 081805geo
TOP: Cross-Sections of Three-Dimensional Objects

205 ANS: 1 PTS: 2 REF: 061801geo TOP: Properties of Transformations
KEY: graphics

206 ANS: 3 PTS: 2 REF: 011815geo TOP: Mapping a Polygon onto Itself
207 ANS: 2

\[x^2 + y^2 - 6x + 2y = 6 \]
\[x^2 - 6x + 9 + y^2 + 2y + 1 = 6 + 9 + 1 \]
\[(x - 3)^2 + (y + 1)^2 = 16 \]

PTS: 2 REF: 011812geo TOP: Equations of Circles
KEY: completing the square

208 ANS: 2

\[(x - 5)^2 + (y - 2)^2 = 16 \]
\[x^2 - 10x + 25 + y^2 - 4y + 4 = 16 \]
\[x^2 - 10x + y^2 - 4y = -13 \]

PTS: 2 REF: 061820geo TOP: Equations of Circles
KEY: write equation, given graph

209 ANS: 3 PTS: 2 REF: 061816geo TOP: Rotations of Two-Dimensional Objects

210 ANS: 2

\[-4 + \frac{2}{5}(6 - 4) = -4 + \frac{2}{5}(10) = -4 + 4 = 0 \]
\[5 + \frac{2}{5}(20 - 5) = 5 + \frac{2}{5}(15) = 5 + 6 = 11 \]

PTS: 2 REF: 061715geo TOP: Directed Line Segments

211 ANS: 3 PTS: 2 REF: 061702geo TOP: Polygons in the Coordinate Plane

212 ANS: 4

\[4\sqrt{(-1 - 2)^2 + (2 - 3)^2} = 4\sqrt{10} \]

PTS: 2 REF: 081808geo TOP: Polygons in the Coordinate Plane

213 ANS: 1

Since a dilation preserves parallelism, the line \(4y = 3x + 7 \) and its image \(3x - 4y = 9 \) are parallel, with slopes of \(\frac{3}{4} \).

PTS: 2 REF: 081710geo TOP: Line Dilations

214 ANS: 4

\[\frac{300}{360} \cdot 8 \pi = \frac{160\pi}{3} \]

PTS: 2 REF: 011721geo TOP: Sectors

215 ANS: 3

\[\cos 40 = \frac{14}{x} \]
\[x \approx 18 \]

PTS: 2 REF: 011712geo TOP: Using Trigonometry to Find a Side
\[\angle B = 180 - (82 + 26) = 72; \quad \angle DEC = 180 - 26 = 154; \quad \angle EDB = 360 - (154 + 26 + 72) = 108; \quad \angle BDF = \frac{180}{2} = 54; \quad \angle DFB = 180 - (54 + 72) = 54 \]

PTS: 2
REF: 061710geo
TOP: Interior and Exterior Angles of Triangles

\[\frac{2}{4} = \frac{9-x}{x} \]
\[36 - 4x = 2x \]
\[x = 6 \]

PTS: 2
REF: 061705geo
TOP: Side Splitter Theorem

\[9 \cdot 3 = 27, \quad 27 \cdot 4 = 108 \]

PTS: 2
REF: 061805geo
TOP: Dilations

\[-8 + \frac{3}{5}(7 - 8) = -8 + 9 = 1 \quad 7 + \frac{3}{5}(-13 - 7) = 7 - 12 = -5 \]

PTS: 2
REF: 081815geo
TOP: Directed Line Segments

\[\frac{6.6}{x} = \frac{4.2}{5.25} \]
\[4.2x = 34.65 \]
\[x = 8.25 \]

PTS: 2
REF: 081705geo
TOP: Similarity
KEY: basic

\[6x - 40 + x + 20 = 180 - 3x \quad m\angle BAC = 180 - (80 + 40) = 60 \]
\[10x = 200 \]
\[x = 20 \]

PTS: 2
REF: 011809geo
TOP: Exterior Angle Theorem

ANS: 1
PTS: 2
REF: 011811geo
TOP: Dilations

ANS: 4
PTS: 2
REF: 011810geo
TOP: Rotations of Two-Dimensional Objects

ANS: 3
PTS: 2
REF: 061706geo
TOP: Line Dilations

ANS: 1
Parallel chords intercept congruent arcs. \[\frac{180 - 130}{2} = 25 \]

PTS: 2
REF: 081704geo
TOP: Chords, Secants and Tangents
KEY: parallel lines
226 ANS: 4
AA

PTS: 2 REF: 061809geo TOP: Similarity Proofs

227 ANS: 4 PTS: 2 REF: 011705geo TOP: Special Quadrilaterals

228 ANS: 4
\[
\frac{1}{2} (360 - 268) = 46
\]

PTS: 2 REF: 061704geo TOP: Chords, Secants and Tangents

229 ANS: 4 PTS: 2 REF: 011819geo TOP: Special Quadrilaterals

230 ANS: 4 PTS: 2 REF: 081702geo TOP: Identifying Transformations

231 ANS: 1
\[
\cos S = \frac{60}{65}
\]

\[
S \approx 23
\]

PTS: 2 REF: 061713geo TOP: Using Trigonometry to Find an Angle

232 ANS: 3
\[
y = mx + b
\]

\[
2 = \frac{1}{2} (-2) + b
\]

\[3 = b\]

PTS: 2 REF: 011701geo TOP: Parallel and Perpendicular Lines
KEY: write equation of parallel line

233 ANS: 3
\[
x(x - 6) = 4^2
\]

\[
x^2 - 6x - 16 = 0
\]

\[
(x - 8)(x + 2) = 0
\]

\[x = 8\]

PTS: 2 REF: 081807geo TOP: Similarity KEY: altitude

234 ANS: 4 PTS: 2 REF: 081801geo TOP: Lines and Angles

235 ANS: 2
\[
\triangle ACB \sim \triangle AED
\]

PTS: 2 REF: 061811geo TOP: Similarity KEY: basic

236 ANS: 2 PTS: 2 REF: 061720geo TOP: Parallelograms
237 ANS: 1

\[20 \cdot 12 \cdot 45 + \frac{1}{2} \pi (10)^2 (45) \approx 17869 \]

PTS: 2 REF: 061807geo TOP: Volume KEY: compositions

238 ANS: 4

\[\text{Diagram} \]

PTS: 2 REF: 081711geo TOP: Exterior Angle Theorem

239 ANS: 4 PTS: 2 REF: 061803geo TOP: Identifying Transformations KEY: graphics

240 ANS: 4

\[\text{Diagram} \]

PTS: 2 REF: 081708geo TOP: Interior and Exterior Angles of Polygons

241 ANS: 4

Opposite angles of an inscribed quadrilateral are supplementary.

PTS: 2 REF: 011821geo TOP: Inscribed Quadrilaterals

242 ANS: 3

\[2.5 \times 1.25 \times (27 \times 12) + \frac{1}{2} \pi (1.25)^2 (27 \times 12) \approx 1808 \]

PTS: 2 REF: 061723geo TOP: Volume KEY: compositions

243 ANS: 3 PTS: 2 REF: 011710geo TOP: Compositions of Transformations KEY: identify

244 ANS: 3

\[V = \frac{1}{3} \pi r^2 h \]

\[54.45 \pi = \frac{1}{3} \pi (3.3)^2 h \]

\[h = 15 \]

PTS: 2 REF: 011807geo TOP: Volume KEY: cones

245 ANS: 1 PTS: 2 REF: 061707geo TOP: Mapping a Polygon onto Itself

246 ANS: 2 PTS: 2 REF: 011805geo TOP: Cross-Sections of Three-Dimensional Objects

247 ANS: 4 PTS: 2 REF: 061813geo TOP: Special Quadrilaterals
248 ANS: 2

\[V = \frac{1}{3} \left(\frac{36}{4} \right)^2 \cdot 15 = 405 \]

PTS: 2 REF: 011822geo TOP: Volume KEY: pyramids

249 ANS: 2

\[\frac{11}{1.2 \text{ oz}} \left(\frac{16 \text{ oz}}{1 \text{ lb}} \right) = \frac{13.31}{1 \text{ lb}} \left(\frac{1 \text{ g}}{3.7851} \right) \approx \frac{3.5 \text{ g}}{1 \text{ lb}} \]

PTS: 2 REF: 061618geo TOP: Density

250 ANS: 1

\[2x + 4 + 46 = 90 \]

\[2x = 40 \]

\[x = 20 \]

PTS: 2 REF: 061808geo TOP: Cofunctions

251 ANS: 1

\[\frac{64}{4} = 16 \quad 16^2 = 256 \quad 2w + 2(w + 2) = 64 \quad 15 \times 17 = 255 \quad 2w + 2(w + 4) = 64 \quad 14 \times 18 = 252 \quad 2w + 2(w + 6) = 64 \]

\[w = 15 \]

\[w = 14 \]

\[w = 13 \]

\[13 \times 19 = 247 \]

PTS: 2 REF: 011708geo TOP: Area of Polygons

252 ANS: 1

\[3 + \frac{2}{5}(8 - 3) = 3 + \frac{2}{5}(5) = 3 + 2 = 5 \quad 5 + \frac{2}{5}(-5 - 5) = 5 + \frac{2}{5}(-10) = 5 - 4 = 1 \]

PTS: 2 REF: 011720geo TOP: Directed Line Segments

253 ANS: 1

The slope of \(3x + 2y = 12 \) is \(-\frac{3}{2}\), which is the opposite reciprocal of \(\frac{2}{3} \).

PTS: 2 REF: 081811geo TOP: Parallel and Perpendicular Lines KEY: identify perpendicular lines

254 ANS: 3

\[\frac{x}{6.3} = \frac{3}{5} \quad \frac{y}{9.4} = \frac{6.3}{6.3 + 3.78} \]

\[x = 3.78 \quad y \approx 5.9 \]

PTS: 2 REF: 081816geo TOP: Side Splitter Theorem
255 ANS: 2
\[\frac{x}{x + 3} = \frac{14}{21} \]
\[14 - 6 = 8 \]
\[21x = 14x + 42 \]
\[7x = 42 \]
\[x = 6 \]
PTS: 2 \hspace{1cm} REF: 081812geo \hspace{1cm} TOP: Side Splitter Theorem

256 ANS: 4
\[\frac{1}{3.5} = \frac{x}{18 - x} \]
\[3.5x = 18 - x \]
\[4.5x = 18 \]
\[x = 4 \]
PTS: 2 \hspace{1cm} REF: 081707geo \hspace{1cm} TOP: Side Splitter Theorem

257 ANS: 2
PTS: 2 \hspace{1cm} REF: 081701geo \hspace{1cm} TOP: Cross-Sections of Three-Dimensional Objects

258 ANS: 2
\[AB = 10 \text{ since } \triangle ABC \text{ is a 6-8-10 triangle. } \]
\[6^2 = 10x \]
\[3.6 = x \]
PTS: 2 \hspace{1cm} REF: 081820geo \hspace{1cm} TOP: Similarity \hspace{1cm} KEY: leg

259 ANS: 2
\[\frac{30}{360} (5)^2 (\pi) \approx 6.5 \]
PTS: 2 \hspace{1cm} REF: 081818geo \hspace{1cm} TOP: Sectors

260 ANS: 1
Illinois: \[\frac{12830632}{231.1} \approx 55520 \]
Florida: \[\frac{18801310}{350.6} \approx 53626 \]
New York: \[\frac{19378102}{411.2} \approx 47126 \]
Pennsylvania: \[\frac{12702379}{283.9} \approx 44742 \]
PTS: 2 \hspace{1cm} REF: 081720geo \hspace{1cm} TOP: Density

261 ANS: 3
\[v = \pi r^2 h \]
(1) \[6^2 \cdot 10 = 360 \]
(2) \[10^2 \cdot 6 = 600 \]
(3) \[5^2 \cdot 6 = 150 \]
(4) \[3^2 \cdot 10 = 900 \]
PTS: 2 \hspace{1cm} REF: 081713geo \hspace{1cm} TOP: Rotations of Two-Dimensional Objects
262 ANS: 3
NYSED has stated that all students should be awarded credit regardless of their answer to this question.

PTS: 2 REF: 061722geo TOP: Triangle Congruency

263 ANS: 1
\[84 = \frac{1}{3} \cdot s^2 \cdot 7 \]
\[6 = s \]

PTS: 2 REF: 061716geo TOP: Volume KEY: pyramids

264 ANS: 4
\[40 - x + 3x = 90 \]
\[2x = 50 \]
\[x = 25 \]

PTS: 2 REF: 081721geo TOP: Cofunctions

265 ANS: 4
\[\sin 16.5^\circ = \frac{8}{x} \]
\[x \approx 28.2 \]

PTS: 2 REF: 081806ai TOP: Using Trigonometry to Find a Side

266 ANS: 1 PTS: 2 REF: 011814geo TOP: Line Dilations

267 ANS: 1
\[\sin 32^\circ = \frac{x}{6.2} \]
\[x \approx 3.3 \]

PTS: 2 REF: 081719geo TOP: Using Trigonometry to Find a Side

268 ANS: 2
\[6 \cdot 6 = x(x - 5) \]
\[36 = x^2 - 5x \]
\[0 = x^2 - 5x - 36 \]
\[0 = (x - 9)(x + 4) \]
\[x = 9 \]

PTS: 2 REF: 061708geo TOP: Chords, Secants and Tangents
KEY: intersecting chords, length
\[
\frac{s_l}{s_s} = \frac{6\theta}{4\theta} = 1.5
\]

PTS: 2 \hspace{1cm} \text{REF: 011824geo} \hspace{1cm} \text{TOP: Arc Length} \hspace{1cm} \text{KEY: arc length}

270 \hspace{0.5cm} \text{ANS: 3} \hspace{1cm} \text{PTS: 2} \hspace{1cm} \text{REF: 081817geo} \hspace{1cm} \text{TOP: Mapping a Polygon onto Itself}

271 \hspace{0.5cm} \text{ANS: 4} \hspace{1cm} \text{PTS: 2} \hspace{1cm} \text{REF: 081822geo} \hspace{1cm} \text{TOP: Medians, Altitudes and Bisectors}

272 \hspace{0.5cm} \text{ANS: 4} \hspace{1cm} \text{PTS: 2} \hspace{1cm} \text{REF: 081514geo} \hspace{1cm} \text{TOP: Compositions of Transformations} \hspace{1cm} \text{KEY: grids}

273 \hspace{0.5cm} \text{ANS: 2}

\[
\frac{360^\circ}{5} = 72^\circ \hspace{1cm} 216^\circ \text{ is a multiple of } 72^\circ
\]

PTS: 2 \hspace{1cm} \text{REF: 061819geo} \hspace{1cm} \text{TOP: Mapping a Polygon onto Itself}

274 \hspace{0.5cm} \text{ANS: 4} \hspace{1cm} \text{PTS: 2} \hspace{1cm} \text{REF: 011704geo} \hspace{1cm} \text{TOP: Midsegments}

275 \hspace{0.5cm} \text{ANS: 3} \hspace{1cm} \text{PTS: 2} \hspace{1cm} \text{REF: 011714geo} \hspace{1cm} \text{TOP: Trigonometric Ratios}

276 \hspace{0.5cm} \text{ANS: 3}

\[
\cos B = \frac{17.6}{26}
\]

\[B \approx 47^\circ\]

PTS: 2 \hspace{1cm} \text{REF: 061806geo} \hspace{1cm} \text{TOP: Using Trigonometry to Find an Angle}
279 ANS: 1

\[B: (4-3,3-4) \rightarrow (1,-1) \rightarrow (2,-2) \rightarrow (2+3,-2+4) \]

\[C: (2-3,1-4) \rightarrow (-1,-3) \rightarrow (-2,-6) \rightarrow (-2+3,-6+4) \]

PTS: 2 REF: 011713geo TOP: Line Dilations

280 ANS: 1

\[x^2 + y^2 - 6y + 9 = -1 + 9 \]
\[x^2 + (y - 3)^2 = 8 \]

PTS: 2 REF: 011718geo TOP: Equations of Circles
KEY: completing the square

281 ANS: 1

Distance and angle measure are preserved after a reflection and translation.

PTS: 2 REF: 081802geo TOP: Properties of Transformations
KEY: basic

282 ANS: 3

\[\frac{24}{40} = \frac{15}{x} \]
\[24x = 600 \]
\[x = 25 \]

PTS: 2 REF: 011813geo TOP: Side Splitter Theorem

283 ANS: 2

\[m = \frac{3}{2} \]

\[m_\perp = -\frac{2}{3} \]

PTS: 2 REF: 061812geo TOP: Parallel and Perpendicular Lines
KEY: write equation of perpendicular line

284 ANS: 1 PTS: 2 REF: 081804geo TOP: Compositions of Transformations
KEY: grids

285 ANS: 2 PTS: 2 REF: 061709geo TOP: Triangle Proofs
KEY: statements

286 ANS: 3

In (1) and (2), \(ABCD \) could be a rectangle with non-congruent sides. (4) is not possible

PTS: 2 REF: 081714geo TOP: Special Quadrilaterals
\[x^2 + 4x + 4 + y^2 - 8y + 16 = -16 + 4 + 16 \]
\[(x + 2)^2 + (y - 4)^2 = 4 \]

PTS: 2 REF: 081821geo TOP: Equations of Circles
KEY: completing the square

288 ANS: 4 PTS: 2 REF: 061711geo TOP: Special Quadrilaterals

289 ANS: 2
The line \(y = -3x + 6 \) passes through the center of dilation, so the dilated line is not distinct.

PTS: 2 REF: 061824geo TOP: Line Dilations

290 ANS: 2
\[4 \times 4 \times 6 - \pi(1)^2(6) \approx 77 \]

PTS: 2 REF: 011711geo TOP: Volume KEY: compositions

291 ANS: 3 PTS: 2 REF: 061802geo TOP: Lines and Angles

292 ANS: 2 PTS: 2 REF: 011802geo TOP: Parallelograms

293 ANS: 3
The \(x \)-axis and line \(x = 4 \) are lines of symmetry and \((4,0)\) is a point of symmetry.

PTS: 2 REF: 081706geo TOP: Mapping a Polygon onto Itself

294 ANS: 1
\[(12 \cdot 11) - \left(\frac{1}{2} (12 \cdot 4) + \frac{1}{2} (7 \cdot 9) + \frac{1}{2} (11 \cdot 3) \right) = 60 \]

PTS: 2 REF: 061815geo TOP: Polygons in the Coordinate Plane

295 ANS: 3
\[\frac{x + 72}{2} = 58 \]
\[x + 72 = 116 \]
\[x = 44 \]

PTS: 2 REF: 061817geo TOP: Chords, Secants and Tangents
KEY: intersecting chords, angle
296 ANS: 1

\[82.8 = \frac{1}{3}(4.6)(9)h\]

\[h = 6\]

PTS: 2 REF: 061810geo TOP: Volume KEY: pyramids

297 ANS: 4

\[\frac{360°}{10} = 36°\] 252° is a multiple of 36°

PTS: 2 REF: 081722geo TOP: Mapping a Polygon onto Itself

298 ANS: 2 PTS: 2 REF: 011702geo TOP: Compositions of Transformations KEY: grids

299 ANS: 3 PTS: 2 REF: 061703geo TOP: Cofunctions

300 ANS: 3

\[\sqrt{(-5)^2 + 12^2} = \sqrt{169} \quad \sqrt{11^2 + (2\sqrt{12})^2} = \sqrt{121 + 48} = \sqrt{169}\]

PTS: 2 REF: 011722geo TOP: Circles in the Coordinate Plane

301 ANS: 2 PTS: 2 REF: 061701geo TOP: Compositions of Transformations KEY: identify

302 ANS: 1

\[x = -5 + \frac{1}{3}(4 - 5) = -5 + 3 = -2 \quad y = 2 + \frac{1}{3}(-10 - 2) = 2 - 4 = -2\]

PTS: 2 REF: 011806geo TOP: Directed Line Segments

303 ANS: 1

\[\frac{72 - 34}{2} = 19\]

PTS: 2 REF: 061918geo TOP: Chords, Secants and Tangents KEY: secants drawn from common point, angle

304 ANS: 1

\[V = \frac{1}{3}\pi(4)^2(6) = 32\pi\]

PTS: 2 REF: 061718geo TOP: Rotations of Two-Dimensional Objects
305 ANS: 2
\[m = \frac{3}{2} \] \\
\[1 = -\frac{2}{3}(-6) + b \]
\[m_\perp = -\frac{2}{3} \]
\[1 = 4 + b \]
\[-3 = b \]

PTS: 2
REF: 061719geo
TOP: Parallel and Perpendicular Lines
KEY: write equation of perpendicular line

306 ANS: 1
\[-8 + \frac{3}{8}(16 - 8) = -8 + \frac{3}{8}(8) = -8 + 9 = 1 \]
\[-2 + \frac{3}{8}(6 - 2) = -2 + \frac{3}{8}(4) = -2 + \frac{3}{8}(3) = 1 \]

PTS: 2
REF: 061719geo
TOP: Parallel and Perpendicular Lines
KEY: write equation of perpendicular line

307 ANS: 1
\[\tan x = \frac{1}{12} \]
\[x \approx 4.76 \]

PTS: 2
REF: 081717geo
TOP: Directed Line Segments

308 ANS: 2
\[x^2 = 3 \cdot 18 \]
\[x = \sqrt{3 \cdot 3 \cdot 6} \]
\[x = 3 \sqrt{6} \]

PTS: 2
REF: 081715geo
TOP: Using Trigonometry to Find an Angle

309 ANS: 2
\[2x + 7 + 4x - 7 = 90 \]
\[6x = 90 \]
\[x = 15 \]

PTS: 2
REF: 081712geo
TOP: Chords, Secants and Tangents
KEY: secant and tangent drawn from common point, length

310 ANS: 4
\[\frac{5}{7} = \frac{x}{x + 5} \]
\[12 \frac{1}{2} + 5 = 17 \frac{1}{2} \]
\[5x + 25 = 7x \]
\[2x = 25 \]
\[x = 12 \frac{1}{2} \]

PTS: 2
REF: 061821geo
TOP: Side Splitter Theorem
311 ANS: 2
\[
\tan \theta = \frac{2.4}{x} \\
\frac{3}{7} = \frac{2.4}{x} \\
x = 5.6
\]

PTS: 2 REF: 011707geo TOP: Using Trigonometry to Find a Side

312 ANS: 2
\[
V = \frac{1}{3} \left(\frac{60}{12} \right)^2 \left(\frac{84}{12} \right) \approx 58
\]

PTS: 2 REF: 081819geo TOP: Volume KEY: pyramids

313 ANS: 4 PTS: 2 REF: 011723geo
TOP: Cross-Sections of Three-Dimensional Objects

314 ANS: 2
\[-4 + \frac{2}{5} (1 - 4) = -4 + \frac{2}{5} (5) = -4 + 2 = -2 \quad -2 + \frac{2}{5} (8 - 2) = -2 + \frac{2}{5} (10) = -2 + 4 = 2\]

PTS: 2 REF: 061814geo TOP: Directed Line Segments

315 ANS: 1
NYSED accepts either (1) or (3) as a correct answer. Statement III is not true if \(A, B, A' \) and \(B' \) are collinear.

PTS: 2 REF: 061714geo TOP: Compositions of Transformations KEY: basic

316 ANS: 4 PTS: 2 REF: 081810geo TOP: Triangle Proofs KEY: statements

317 ANS: 3
\[
\frac{7 - 1}{0 - 2} = \frac{6}{-2} = -3 \quad \text{The diagonals of a rhombus are perpendicular.}
\]

PTS: 2 REF: 011719geo TOP: Quadrilaterals in the Coordinate Plane

318 ANS: 1 PTS: 2 REF: 011703geo TOP: Triangle Congruency

319 ANS: 1
\[
V = \frac{1}{3} \pi \left(\frac{1.5}{2} \right)^2 \left(\frac{4}{2} \right) \approx 1.2
\]

PTS: 2 REF: 011724geo TOP: Volume KEY: cones

320 ANS: 2
\[
6 + 6\sqrt{3} + 6 + 6\sqrt{3} \approx 32.8
\]

PTS: 2 REF: 011709geo TOP: 30-60-90 Triangles
321 ANS: 2
8(x + 8) = 6(x + 18)
8x + 64 = 6x + 108
2x = 44
x = 22

PTS: 2
REF: 011715geo
TOP: Chords, Secants and Tangents
KEY: secants drawn from common point, length

322 ANS: 4
REF: 011706geo
TOP: Identifying Transformations
KEY: basic

323 ANS: 1
sin 32 = \frac{O}{29.5}
O \approx 68.6

PTS: 2
REF: 011804geo
TOP: Using Trigonometry to Find a Side

324 ANS: 4
REF: 011816geo
TOP: Chords, Secants and Tangents
KEY: inscribed

325 ANS: 4
REF: 081716geo
TOP: Midsegments

326 ANS: 2
\frac{512\pi}{3} \cdot 2\pi = \frac{4\pi}{3}

PTS: 2
REF: 081723geo
TOP: Sectors

327 ANS: 1
REF: 011716geo
TOP: Special Quadrilaterals

328 ANS: 1
\cos x = \frac{12}{13}
x \approx 23

PTS: 2
REF: 081809ai
TOP: Using Trigonometry to Find an Angle

329 ANS: 2
x^2 = 12(12 - 8)
x^2 = 48
x = 4\sqrt{3}

PTS: 2
REF: 011823geo
TOP: Similarity
KEY: leg
The segment’s midpoint is the origin and slope is \(-2\). The slope of a perpendicular line is \(\frac{1}{2}\).

\[y = \frac{1}{2} x + 0 \]

\[2y = x \]

\[2y - x = 0 \]

\[\text{REF: 081724geo} \quad \text{TOP: Parallel and Perpendicular Lines} \]

\[\text{KEY: perpendicular bisector} \]

\[\frac{36}{45} \neq \frac{15}{18} \]

\[\frac{4}{5} \neq \frac{5}{6} \]

\[\text{PTS: 2} \]

\[\text{REF: 081709geo} \quad \text{STA: G.G.44} \quad \text{TOP: Similarity Proofs} \]

\[m = \frac{-4}{-6} = \frac{2}{3} \]

\[m_{\perp} = -\frac{3}{2} \]

\[\text{PTS: 2} \]

\[\text{REF: 011820geo} \quad \text{TOP: Parallel and Perpendicular Lines} \]

\[\text{KEY: write equation of perpendicular line} \]

\[\frac{4\left(-\frac{1}{3}\right)^2 + (5-1)^2}{4 \sqrt{(-1-(-3))^2 + (5-1)^2}} = 4 \sqrt{20} \]

\[\text{PTS: 2} \]

\[\text{REF: 081703geo} \quad \text{TOP: Polygons in the Coordinate Plane} \]
338 ANS: 3
\[6 \cdot 3^2 = 54 \quad 12 \cdot 3 = 36 \]

PTS: 2 REF: 081823geo TOP: Dilations

339 ANS: 4
\[\sin 71 = \frac{x}{20} \]
\[x = 20 \sin 71 \approx 19 \]

PTS: 2 REF: 061721geo TOP: Using Trigonometry to Find a Side
KEY: without graphics

340 ANS: 1
\[360 - (82 + 104 + 121) = 53 \]

PTS: 2 REF: 011801geo TOP: Properties of Transformations
KEY: graph

341 ANS: 4
PTS: 2 REF: 081813geo TOP: Parallelograms

342 ANS: 4
\[C = 12\pi \quad \frac{120}{360} (12\pi) = \frac{1}{3} (12\pi) \]

PTS: 2 REF: 061822geo TOP: Arc Length KEY: arc length

343 ANS: 1
\[24x = 10^2 \]
\[24x = 100 \]
\[x \approx 4.2 \]

PTS: 2 REF: 061823geo TOP: Similarity KEY: leg
Geometry 2 Point Regents Exam Questions
Answer Section

344 ANS:

\[R_{90^\circ} \text{ or } T_{2,-6} \circ R_{(-4,2),90^\circ} \text{ or } R_{270^\circ} \circ r_{x-axis} \circ r_{y-axis} \]

PTS: 2

REF: 061929geo

TOP: Compositions of Transformations

KEY: identify

345 ANS:

\[
\cos B \text{ increases because } \angle A \text{ and } \angle B \text{ are complementary and } \sin A = \cos B.
\]

PTS: 2

REF: 011827geo

TOP: Cofunctions

346 ANS:

PTS: 2

REF: 081526geo

TOP: Constructions

347 ANS:

Reflections are rigid motions that preserve distance.

PTS: 2

REF: 061530geo

TOP: Triangle Congruency

348 ANS:

\[\frac{1}{2} (5)(12) = 30 \]

PTS: 2

REF: 081928geo

TOP: Polygons in the Coordinate Plane

349 ANS:

\[\sqrt[3]{\frac{3V_f}{4\pi}} - \sqrt[3]{\frac{3V_p}{4\pi}} = \sqrt[3]{\frac{3(294)}{4\pi}} - \sqrt[3]{\frac{3(180)}{4\pi}} \approx 0.6 \]

PTS: 2

REF: 061728geo

TOP: Volume

KEY: spheres
350 ANS:
\[3y + 7 = 2x \quad y - 6 = \frac{2}{3}(x - 2)\]
\[3y = 2x - 7\]
\[y = \frac{2}{3}x - \frac{7}{3}\]

PTS: 2 REF: 011925geo TOP: Parallel and Perpendicular Lines
KEY: write equation of parallel line

351 ANS:
\[17x = 15^2\]
\[17x = 225\]
\[x \approx 13.2\]

PTS: 2 REF: 061930geo TOP: Similarity KEY: leg

352 ANS:
\[\frac{120}{230} = \frac{x}{315}\]
\[x = 164\]

PTS: 2 REF: 061527geo TOP: Similarity KEY: basic

353 ANS:
\[\tan x = \frac{10}{4}\]
\[x \approx 68\]

PTS: 2 REF: 061630geo TOP: Using Trigonometry to Find an Angle

354 ANS:
\[180 - 2(30) = 120\]

PTS: 2 REF: 011626geo TOP: Chords, Secants and Tangents
KEY: parallel lines

355 ANS:
\[r_{y}^{'} = 2 \circ r_{y-axis}\]

PTS: 2 REF: 081927geo TOP: Compositions of Transformations
KEY: identify
356 ANS:
\[4x - 0.07 = 2x + 0.01\]
\[\sin A\] is the ratio of the opposite side and the hypotenuse while \(\cos B\) is the ratio of the adjacent side and the hypotenuse. The side opposite angle \(A\) is the same side as the side adjacent to angle \(B\). Therefore, \(\sin A = \cos B\).

\[2x = 0.8\]

\[x = 0.4\]

PTS: 2 REF: fall1407geo TOP: Cofunctions

357 ANS:
No. The midpoint of \(DF\) is \(\left(\frac{1+4}{2}, \frac{-1+2}{2}\right) = (2.5, 0.5)\). A median from point \(E\) must pass through the midpoint.

PTS: 2 REF: 011930geo TOP: Triangles in the Coordinate Plane

358 ANS:
\[\sin x = \frac{4.5}{11.75}\]

\[x \approx 23\]

PTS: 2 REF: 061528geo TOP: Using Trigonometry to Find an Angle

359 ANS:
\[\cos 68 = \frac{10}{x}\]

\[x \approx 27\]

PTS: 2 REF: 061927geo TOP: Using Trigonometry to Find a Side

360 ANS:
\[\frac{3.75}{5} = \frac{4.5}{6}\]

\(AB\) is parallel to \(CD\) because \(AB\) divides the sides proportionately.

\[39.375 = 39.375\]

PTS: 2 REF: 061627geo TOP: Side Splitter Theorem

361 ANS:
\[\frac{6}{14} = \frac{9}{21}\]

\[SAS\]

\[126 = 126\]

PTS: 2 REF: 081529geo TOP: Similarity KEY: basic
362 ANS:

![Image of a hexagon]

PTS: 2 REF: 081728geo TOP: Constructions

363 ANS:

\[29.5 = 2\pi r \quad V = \frac{4}{3}\pi \left(\frac{29.5}{2\pi}\right)^3 \approx 434 \]

\[r = \frac{29.5}{2\pi} \]

PTS: 2 REF: 061831geo TOP: Volume KEY: spheres

364 ANS:

Yes. The sequence of transformations consists of a reflection and a translation, which are isometries which preserve distance and congruency.

PTS: 2 REF: 011628geo TOP: Triangle Congruency

365 ANS:

Parallelogram \(ABCD\), diagonals \(AC\) and \(BD\) intersect at \(E\) (given). \(DC \parallel AB; DA \parallel CB\) (opposite sides of a parallelogram are parallel). \(\angle ACD \cong \angle CAB\) (alternate interior angles formed by parallel lines and a transversal are congruent).

PTS: 2 REF: 081528geo TOP: Quadrilateral Proofs

366 ANS:

\[\frac{2}{5} \cdot (16 - 1) = 6 \quad \frac{2}{5} \cdot (14 - 4) = 4 \quad (1 + 6, 4 + 4) = (7, 8) \]

PTS: 2 REF: 081531geo TOP: Directed Line Segments

367 ANS:

\[500 \times 1015 \text{ cc} \times \frac{80.29 \text{ kg}}{\text{kg}} \times \frac{7.95 \text{ g}}{\text{cc}} \times \frac{1 \text{ kg}}{1000 \text{ g}} = 1170 \]

PTS: 2 REF: 011829geo TOP: Density

368 ANS:

Yes. The triangles are congruent because of SSS \(5^2 + 12^2 = 13^2\). All congruent triangles are similar.

PTS: 2 REF: 061830geo TOP: Triangle Congruency
369 ANS:
\[
\frac{1}{2}(5)(10) = 25
\]

PTS: 2 REF: 061926geo TOP: Polygons in the Coordinate Plane

370 ANS:

PTS: 2 REF: 061931geo TOP: Constructions

371 ANS:
\[
\frac{124 - 56}{2} = 34
\]

PTS: 2 REF: 081930geo TOP: Chords, Secants and Tangents
KEY: secant and tangent drawn from common point, angle

372 ANS:
\[
\frac{3}{8} \cdot 56 = 21
\]

PTS: 2 REF: 081625geo TOP: Chords, Secants and Tangents
KEY: common tangents

373 ANS:
\[
73 + R = 90 \text{ Equal cofunctions are complementary.}
\]
\[
R = 17
\]

PTS: 2 REF: 061628geo TOP: Cofunctions

374 ANS:
If an altitude is drawn to the hypotenuse of a triangle, it divides the triangle into two right triangles similar to each other and the original triangle.

PTS: 2 REF: 061729geo TOP: Similarity KEY: altitude
375 ANS:
\[
\frac{72}{360} (\pi)(10^2) = 20\pi
\]

PTS: 2 REF: 061928geo TOP: Sectors

376 ANS:
\[\angle D = 46^\circ \text{ because the angles of a triangle equal } 180^\circ. \quad \angle B = 46^\circ \text{ because opposite angles of a parallelogram are congruent.}\]

PTS: 2 REF: 081925geo TOP: Interior and Exterior Angles of Polygons

377 ANS:
\[T_{6,0} \circ r_{x-axis}\]

PTS: 2 REF: 061625geo TOP: Compositions of Transformations

KEY: identify

378 ANS:
\[A(-2,1) \to (-3,-1) \to (-6,-2) \to (-5,0), B(0,5) \to (-1,3) \to (-2,6) \to (-1,8),\]
\[C(4,-1) \to (3,-3) \to (6,-6) \to (7,-4)\]

PTS: 2 REF: 061826geo TOP: Dilations

379 ANS:
\[s = \theta \cdot r \quad s = \theta \cdot r \quad \text{Yes, both angles are equal.}\]
\[\pi = A \cdot 4 \quad \frac{13\pi}{8} = B \cdot 6.5\]
\[\frac{\pi}{4} = A \quad \frac{\pi}{4} = B\]

PTS: 2 REF: 061629geo TOP: Arc Length KEY: arc length

380 ANS:
\[
\frac{40000}{\pi} \approx 19.6 \quad \frac{72000}{\pi} \approx 16.3 \quad \text{Dish } A
\]

PTS: 2 REF: 011630geo TOP: Density

381 ANS:
\[\text{Yes.} \quad (x - 1)^2 + (y + 2)^2 = 4^2\]
\[(3.4 - 1)^2 + (1.2 + 2)^2 = 16\]
\[5.76 + 10.24 = 16\]
\[16 = 16\]

PTS: 2 REF: 081630geo TOP: Circles in the Coordinate Plane
382 ANS:
\[
\frac{1.65}{4.15} = \frac{x}{16.6} \\
4.15x = 27.39 \\
x = 6.6
\]

PTS: 2 REF: 061531geo TOP: Similarity KEY: basic

383 ANS:
\[10 \cdot 6 = 15x\]
\[x = 4\]

PTS: 2 REF: 061828geo TOP: Chords, Secants and Tangents KEY: secants drawn from common point, length

384 ANS:
Opposite angles in a parallelogram are congruent, so \(m\angle O = 118^\circ\). The interior angles of a triangle equal 180°.
\[180 - (118 + 22) = 40\]

PTS: 2 REF: 061526geo TOP: Interior and Exterior Angles of Polygons

385 ANS:
\[\triangle ABC \sim \triangle AED\] by AA. \(\angle DAE \equiv \angle CAB\) because they are the same \(\angle\).
\(\angle DEA \equiv \angle CBA\) because they are both right \(\angle\)s.

PTS: 2 REF: 081829geo TOP: Similarity KEY: basic

386 ANS:
Yes. The bases of the cylinders have the same area and the cylinders have the same height.

PTS: 2 REF: 081725geo TOP: Volume
\[Q = \frac{125\pi(360)}{625\pi} \]
\[Q = 72 \]

PTS: 2 REF: 011828geo TOP: Sectors

388 ANS:
\[2 \left(\frac{36}{12} \times \frac{36}{12} \right) \times 4 = 19.50 \]

PTS: 2 REF: 081831geo TOP: Volume KEY: prisms

389 ANS:
\[A = 6^2 \pi = 36\pi \]
\[36\pi \cdot \frac{x}{360} = 12\pi \]
\[x = 360 \cdot \frac{12}{36} \]
\[x = 120 \]

PTS: 2 REF: 061529geo TOP: Sectors

390 ANS:
\[M = 180 - (47 + 57) = 76 \] Rotations do not change angle measurements.

PTS: 2 REF: 081629geo TOP: Properties of Transformations

391 ANS:

PTS: 2 REF: 061725geo TOP: Constructions KEY: parallel and perpendicular lines

392 ANS:
\[\sin^{-1} \left(\frac{5}{25} \right) \approx 11.5 \]

PTS: 2 REF: 081926geo TOP: Using Trigonometry to Find an Angle
393 ANS:

$-6 + \frac{2}{5}(4 - 6) - 5 + \frac{2}{5}(0 - 5) \quad (-2, -3)$

$-6 + \frac{2}{5}(10) - 5 + \frac{2}{5}(5)$

$-6 + 4 \quad -5 + 2$

$-2 \quad -3$

PTS: 2 REF: 061527geo TOP: Directed Line Segments

394 ANS:

$4 + \frac{4}{9}(22 - 4) \quad 2 + \frac{4}{9}(2 - 2) \quad (12, 2)$

$4 + \frac{4}{9}(18) \quad 2 + \frac{4}{9}(0)$

$4 + 8 \quad 2 + 0$

$12 \quad 2$

PTS: 2 REF: 061626geo TOP: Directed Line Segments

395 ANS:

$\sqrt{(2.5 - 1)^2 + (-0.5 - 1.5)^2} = \sqrt{2.25 + 4} = 2.5$

PTS: 2 REF: 081729geo TOP: Line Dilations

396 ANS:

Parallelogram $ABCD$ with diagonal AC drawn (given). $AC \cong AC$ (reflexive property). $AD \cong CB$ and $BA \cong DC$ (opposite sides of a parallelogram are congruent). $\triangle ABC \cong \triangle CDA$ (SSS).

PTS: 2 REF: 011825geo TOP: Quadrilateral Proofs
397 ANS:
\[
\sin 70 = \frac{30}{L}
\]
\[
L \approx 32
\]

PTS: 2 REF: 011629geo TOP: Using Trigonometry to Find a Side
KEY: graphics

398 ANS:
Each triangular prism has the same base area. Therefore, each corresponding cross-section of the prisms will have the same area. Since the two prisms have the same height of 14, the two volumes must be the same.

PTS: 2 REF: 061727geo TOP: Volume

399 ANS:

![Diagram of triangles](image)

PTS: 2 REF: 081628geo TOP: Constructions
KEY: line bisector

400 ANS:
\[
T_{0,-2} \circ r_{y-axis}
\]

PTS: 2 REF: 011726geo TOP: Compositions of Transformations
KEY: identify

401 ANS:

![Graph showing transformations](image)

PTS: 2 REF: 011625geo TOP: Reflections KEY: grids

402 ANS:
The four small triangles are 8-15-17 triangles. \(4 \times 17 = 68\)

PTS: 2 REF: 081726geo TOP: Special Quadrilaterals
403 ANS:
No, the weight of the bricks is greater than 900 kg. $500 \times (5.1 \text{ cm} \times 10.2 \text{ cm} \times 20.3 \text{ cm}) = 528,003 \text{ cm}^3$.

$$528,003 \text{ cm}^3 \times \frac{1 \text{ m}^3}{1000000 \text{ cm}^3} = 0.528003 \text{ m}^3. \quad \frac{1920 \text{ kg}}{\text{ m}^3} \times 0.528003 \text{ m}^3 \approx 1013 \text{ kg.}$$

PTS: 2 REF: fall1406geo TOP: Density

404 ANS:

![Diagram](image1)

PTS: 2 REF: 061829geo TOP: Constructions
KEY: line bisector

405 ANS:

![Diagram](image2)

PTS: 2 REF: 011826geo TOP: Constructions

406 ANS:
No, because dilations do not preserve distance.

PTS: 2 REF: 061925geo TOP: Dilations

407 ANS:

![Diagram](image3)

PTS: 2 REF: 011929geo TOP: Constructions
KEY: equilateral triangles
\[\triangle MNO \text{ is congruent to } \triangle PNO \text{ by SAS. Since } \triangle MNO \cong \triangle PNO, \text{ then } \overline{MO} \cong \overline{PO} \text{ by CPCTC. So } \overline{NO} \text{ must divide } \overline{MP} \text{ in half, and } MO = 8. \]

PTS: 2
REF: fall1405geo
TOP: Medians, Altitudes and Bisectors

\[\sin 75 = \frac{15}{x} \]
\[x = \frac{15}{\sin 75} \]
\[x \approx 15.5 \]

PTS: 2
REF: 081631geo
TOP: Using Trigonometry to Find a Side

\[R_{(-5,2),90°} \circ T_{-3,1} \circ r_{x-axis} \]

PTS: 2
REF: 011928geo
TOP: Compositions of Transformations

Each quarter in both stacks has the same base area. Therefore, each corresponding cross-section of the stacks will have the same area. Since the two stacks of quarters have the same height of 23 quarters, the two volumes must be the same.

PTS: 2
REF: spr1405geo
TOP: Volume

\[\frac{40}{360} \cdot \pi (4.5)^2 = 2.25\pi \]

PTS: 2
REF: 061726geo
TOP: Sectors

\[R_{180°} \text{ about } \left(\frac{1}{2}, \frac{1}{2}\right) \]

PTS: 2
REF: 081727geo
TOP: Compositions of Transformations

30° \(\triangle CAD \) is an equilateral triangle, so \(\angle CAB = 60° \). Since \(\overrightarrow{AD} \) is an angle bisector, \(\angle CAD = 30° \).

PTS: 2
REF: 081929geo
TOP: Constructions
Triangle $X'Y'Z'$ is the image of $\triangle XYZ$ after a rotation about point Z such that \overline{ZX} coincides with \overline{ZU}. Since rotations preserve angle measure, \overline{ZY} coincides with \overline{ZV}, and corresponding angles X and Y, after the rotation, remain congruent, so $\overline{XY} \parallel \overline{UV}$. Then, dilate $\triangle X'Y'Z'$ by a scale factor of $\frac{ZU}{ZX}$ with its center at point Z. Since dilations preserve parallelism, \overline{XY} maps onto \overline{UV}. Therefore, $\triangle XYZ \sim \triangle UVZ$.

417 ANS: $\cos W = \frac{6}{18}$

$W \approx 71^\circ$

418 ANS: $\ell: y = 3x - 4$

$m: y = 3x - 8$

419 ANS: Translate $\triangle ABC$ along \overline{CF} such that point C maps onto point F, resulting in image $\triangle A'B'C'$. Then reflect $\triangle A'B'C'$ over \overline{DF} such that $\triangle A'B'C'$ maps onto $\triangle DEF$.

or

Reflect $\triangle ABC$ over the perpendicular bisector of \overline{EB} such that $\triangle ABC$ maps onto $\triangle DEF$.

415 ANS:

PTS: 2 REF: spr1406geo TOP: Compositions of Transformations

KEY: grids
420 ANS:

\[\begin{align*}
\text{PTS: 2} & \quad \text{REF: 081626geo} \quad \text{TOP: Compositions of Transformations} \\
\text{KEY: grids} &
\end{align*} \]

421 ANS:

\[\begin{align*}
\text{PTS: 2} & \quad \text{REF: 011725geo} \quad \text{TOP: Constructions} \\
\text{KEY: line bisector} &
\end{align*} \]

422 ANS:

\[\begin{align*}
\frac{152 - 56}{2} &= 48 \\
\text{PTS: 2} & \quad \text{REF: 011728geo} \quad \text{TOP: Chords, Secants and Tangents} \\
\text{KEY: secant and tangent drawn from common point, angle} &
\end{align*} \]

423 ANS:
The acute angles in a right triangle are always complementary. The sine of any acute angle is equal to the cosine of its complement.

\[\begin{align*}
\text{PTS: 2} & \quad \text{REF: spr1407geo} \quad \text{TOP: Cofunctions} \\
\end{align*} \]
ANS:

rotation 180° about the origin, translation 2 units down; rotation 180° about \(B \), translation 6 units down and 6 units left; or reflection over \(x \)-axis, translation 2 units down, reflection over \(y \)-axis

ANS:

Yes, because 28° and 62° angles are complementary. The sine of an angle equals the cosine of its complement.

ANS:

\[
180 - 2(25) = 130
\]

ANS:

\[
\frac{360}{6} = 60
\]

ANS:

No, The line \(4x + 3y = 24 \) passes through the center of dilation, so the dilated line is not distinct.

\[
4x + 3y = 24
\]

\[
3y = -4x + 24
\]

\[
y = \frac{-4}{3} x + 8
\]

ANS:

Yes. \(\angle A \cong \angle X \), \(\angle C \cong \angle Z \), \(\overline{AC} \cong \overline{XZ} \) after a sequence of rigid motions which preserve distance and angle measure, so \(\triangle ABC \cong \triangle XYZ \) by ASA. \(\overline{BC} \cong \overline{YZ} \) by CPCTC.
431 ANS:
No. Since $BC = 5$ and $ST = \sqrt{18}$ are not congruent, the two triangles are not congruent. Since rigid motions preserve distance, there is no rigid motion that maps $\triangle ABC$ onto $\triangle RST$.

PTS: 2 REF: 011830geo TOP: Triangle Congruency

432 ANS:
\[
\frac{121 - x}{2} = 35
\]
\[
121 - x = 70
\]
\[
x = 51
\]

PTS: 2 REF: 011927geo TOP: Chords, Secants and Tangents
KEY: secants drawn from common point, angle

433 ANS:

PTS: 2 REF: 081825geo TOP: Constructions
KEY: parallel and perpendicular lines

434 ANS:

PTS: 2 REF: 011926geo TOP: Interior and Exterior Angles of Polygons

435 ANS:
\[
2 \times (90 \times 10) + (\pi)(30^2) - (\pi)(20^2) \approx 3371
\]

PTS: 2 REF: 011931geo TOP: Compositions of Polygons and Circles
KEY: area
436 ANS:
Reflection across the \(y\)-axis, then translation up 5.

PTS: 2 REF: 061827geo TOP: Compositions of Transformations
KEY: identify

437 ANS:
\[x^2 - 6x + 9 + y^2 + 8y + 16 = 56 + 9 + 16 \quad (3,-4); \ r = 9\]
\[(x-3)^2 + (y+4)^2 = 81\]

PTS: 2 REF: 081731geo TOP: Equations of Circles
KEY: completing the square

438 ANS:
Circle \(A\) can be mapped onto circle \(B\) by first translating circle \(A\) along vector \(AB\) such that \(A\) maps onto \(B\), and then dilating circle \(A\), centered at \(A\), by a scale factor of \(\frac{5}{3}\). Since there exists a sequence of transformations that maps circle \(A\) onto circle \(B\), circle \(A\) is similar to circle \(B\).

PTS: 2 REF: spr1404geo TOP: Similarity Proofs

439 ANS:
\[
\frac{134 + 102}{2} = 118
\]

PTS: 2 REF: 081827geo TOP: Chords, Secants and Tangents
KEY: intersecting chords, angle
\(x = \frac{2}{3} (4 - 2) = 4 \quad -2 + 4 = 2 \quad J(2,5) \)

\(y = \frac{2}{3} (7 - 1) = 4 \quad 1 + 4 = 5 \)

ANS: 2

REF: 011627geo TOP: Directed Line Segments

\[\left(\frac{2.5}{3} \right) (\pi) \left(\frac{8.25}{2} \right)^2 \approx 134 \]

ANS: 2

REF: 081931geo TOP: Volume KEY: cylinders

ANS: 2

REF: 081530geo TOP: Triangle Congruency

ANS: 2

REF: 061825geo TOP: Properties of Transformations KEY: basic

ANS: 2

REF: 011729geo TOP: Similarity Proofs
445 ANS:

The line is on the center of dilation, so the line does not change. \(p: 3x + 4y = 20 \)

446 ANS:

447 ANS:

Rotate \(\triangle ABC \) clockwise about point \(C \) until \(DF \parallel AC \). Translate \(\triangle ABC \) along \(CF \) so that \(C \) maps onto \(F \).

448 ANS:

\[
\frac{137.8}{6^3} \approx 0.638\text{ Ash}
\]
449 ANS:

450 ANS:

PTS: 2 REF: fall1409geo TOP: Constructions
KEY: parallel and perpendicular lines

PTS: 2 REF: 061631geo TOP: Constructions
KEY: parallel and perpendicular lines
Geometry 4 Point Regents Exam Questions
Answer Section

451 ANS:
(2) Euclid’s Parallel Postulate; (3) Alternate interior angles formed by parallel lines and a transversal are congruent; (4) Angles forming a line are supplementary; (5) Substitution

PTS: 4 REF: 011633geo TOP: Triangle Proofs

452 ANS:
\[
\tan 30 = \frac{y}{440} \quad \tan 38.8 = \frac{h}{440} \quad 353.8 - 254 \approx 100
\]
\[
y \approx 254 \quad h \approx 353.8
\]

PTS: 4 REF: 061934geo TOP: Using Trigonometry to Find a Side
KEY: advanced

453 ANS:
\[
\frac{\left(180 - 20\right)}{2} \times \pi(6)^2 = \frac{80}{360} \times 36\pi = 8\pi
\]

PTS: 4 REF: spr1410geo TOP: Sectors

454 ANS:
Since linear angles are supplementary, m\(\angle GIH = 65^\circ\). Since \(\overline{GH} \cong \overline{IH}\), m\(\angle GHI = 50^\circ\) (180 – (65 + 65)). Since \(\angle EGB \cong \angle GHI\), the corresponding angles formed by the transversal and lines are congruent and \(AB \parallel CD\).

PTS: 4 REF: 061532geo TOP: Lines and Angles

455 ANS:
\(\triangle ABE \cong \triangle CBD\) (given); \(\angle A \cong \angle C\) (CPCTC); \(\angle AFD \cong \angle CFE\) (vertical angles are congruent); \(\overline{AB} \cong \overline{CB}\), \(\overline{DB} \cong \overline{EB}\) (CPCTC); \(\overline{AD} \cong \overline{CE}\) (segment subtraction); \(\triangle AFD \cong \triangle CFE\) (AAS)

PTS: 4 REF: 081933geo TOP: Triangle Proofs
KEY: proof
ANS:
The slopes of perpendicular lines are opposite reciprocals. Since the lines are perpendicular, they form right angles and a right triangle.

\[m_{BC} = -\frac{3}{2} \]
\[-1 = \frac{2}{3} (-3) + b \quad \text{or} \quad -4 = \frac{2}{3} (-1) + b \]

\[m_{\perp} = \frac{2}{3} \]
\[-1 = -2 + b \quad \frac{-12}{3} = \frac{-2}{3} + b \]
\[1 = b \]
\[\frac{10}{3} = b \]
\[3 = \frac{2}{3} x + 1 \quad \frac{10}{3} = b \]
\[3 = \frac{2}{3} x \]
\[9 = 2x - 10 \]
\[19 = 2x \]
\[9.5 = x \]

PTS: 4 REF: 081533geo TOP: Triangles in the Coordinate Plane

457 ANS:

\[r = 25 \text{ cm} \left(\frac{1 \text{ m}}{100 \text{ cm}} \right) = 0.25 \text{ m} \]
\[V = \pi (0.25 \text{ m})^2 (10 \text{ m}) = 0.625 \pi \text{ m}^3 \]
\[W = 0.625 \pi \text{ m}^3 \left(\frac{380 \text{ K}}{1 \text{ m}^3} \right) \approx 746.1 \text{ K} \]

\[n = \frac{\$50,000}{\left(\frac{\$4.75}{\text{K}} \right)(746.1 \text{ K})} = 14.1 \quad 15 \text{ trees} \]

PTS: 4 REF: spr1412geo TOP: Density
Right triangle because $\angle CBF$ is inscribed in a semi-circle.

\[
\begin{align*}
\text{458 ANS:} & \quad \text{Right triangle because } \angle CBF \text{ is inscribed in a semi-circle.} \\
\text{PTS: 4} & \quad \text{REF: 011733geo} \quad \text{TOP: Constructions}
\end{align*}
\]

\[
\begin{align*}
\text{459 ANS:} & \quad \tan 7 = \frac{125}{x} \quad \tan 16 = \frac{125}{y} \\
& \quad 1018 - 436 \approx 582 \\
& \quad x \approx 1018 \quad y \approx 436 \\
\text{PTS: 4} & \quad \text{REF: 081532geo} \quad \text{TOP: Using Trigonometry to Find a Side} \\
\text{KEY: advanced}
\end{align*}
\]

\[
\begin{align*}
\text{460 ANS:} & \quad \tan 72 = \frac{x}{400} \quad \sin 55 = \frac{400 \tan 72}{y} \\
& \quad x = 400 \tan 72 \quad y = \frac{400 \tan 72}{\sin 55} \approx 1503 \\
\text{PTS: 4} & \quad \text{REF: 061833geo} \quad \text{TOP: Using Trigonometry to Find a Side} \\
\text{KEY: advanced}
\end{align*}
\]

\[
\begin{align*}
\text{461 ANS:} & \quad V = \frac{2}{3} \pi \left(\frac{6.5}{2} \right)^2 (1) \approx 22 \cdot 22 \cdot 7.48 \approx 165 \\
\text{PTS: 4} & \quad \text{REF: 061933geo} \quad \text{TOP: Volume} \quad \text{KEY: cylinders}
\end{align*}
\]

\[
\begin{align*}
\text{462 ANS:} & \quad C = 2 \pi r \quad V = \frac{1}{3} \pi \cdot 5^2 \cdot 13 \approx 340 \\
& \quad 31.416 = 2 \pi r \\
& \quad 5 \approx r \\
\text{PTS: 4} & \quad \text{REF: 011734geo} \quad \text{TOP: Volume} \quad \text{KEY: cones}
\end{align*}
\]

\[
\begin{align*}
\text{463 ANS:} & \quad x = \sqrt{.55^2 -.25^2} \approx 0.49 \quad \text{No, } .49^2 = .25y \quad .9604 + .25 < 1.5 \\
& \quad .9604 = y \\
\text{PTS: 4} & \quad \text{REF: 061534geo} \quad \text{TOP: Similarity} \quad \text{KEY: leg}
\end{align*}
\]
\[\sin 4.76 = \frac{1.5}{x} \quad \tan 4.76 = \frac{1.5}{x} \quad 18 - \frac{16}{12} \approx 16.7 \]

\[x \approx 18.1 \quad x \approx 18 \]

ANS:

PTS: 4
REF: 011934geo
TOP: Using Trigonometry to Find a Side

\[\tan 36 = \frac{x}{10} \quad \cos 36 = \frac{10}{y} \quad 12.3607 \times 3 \approx 37 \]

\[x \approx 7.3 \quad y \approx 12.3607 \]

ANS:

PTS: 4
REF: 081833geo
TOP: Using Trigonometry to Find a Side

ANS:

\(r_{x=-1} \) Reflections are rigid motions that preserve distance, so \(\triangle ABC \cong \triangle DEF \).

PTS: 4
REF: 061732geo
TOP: Identifying Transformations
KEY: graphics

ANS:

PTS: 4
REF: 081732geo
TOP: Triangles in the Coordinate Plane
ANS:
Quadrilateral $ABCD$ is a parallelogram with diagonals \overline{AC} and \overline{BD} intersecting at E (Given). $\overline{AD} \cong \overline{BC}$ (Opposite sides of a parallelogram are congruent). $\angle AED \cong \angle CEB$ (Vertical angles are congruent). $BC \parallel DA$ (Definition of parallelogram). $\angle DBC \cong \angle BDA$ (Alternate interior angles are congruent). $\triangle AED \cong \triangle CEB$ (AAS). 180° rotation of $\triangle AED$ around point E.

PTS: 4 REF: 061533geo TOP: Quadrilateral Proofs

ANS:
ABC—point of reflection $\rightarrow (-y,x) +$ point of reflection $\triangle DEF \cong \triangle A'B'C'$ because $\triangle DEF$ is a reflection of $A(2,-3) - (2,-3) = (0,0) \rightarrow (0,0) + (2,-3) = A'(2,-3)$

$B(6,-8) - (2,-3) = (4,-5) \rightarrow (5,4) + (2,-3) = B'(7,1)$

$C(2,-9) - (2,-3) = (0,-6) \rightarrow (6,0) + (2,-3) = C'(8,-3)$

$\triangle A'B'C'$ and reflections preserve distance.

PTS: 4 REF: 081633geo TOP: Rotations KEY: grids

ANS:
$\triangle XYZ$, $\overline{XY} \cong \overline{ZY}$, and \overline{YW} bisects $\angle XYZ$ (Given). $\triangle XYZ$ is isosceles (Definition of isosceles triangle). \overline{YW} is an altitude of $\triangle XYZ$ (The angle bisector of the vertex of an isosceles triangle is also the altitude of that triangle). $\overline{YW} \perp \overline{XZ}$ (Definition of altitude). $\angle YWZ$ is a right angle (Definition of perpendicular lines).

PTS: 4 REF: spr1411geo TOP: Triangle Proofs

ANS:
$\frac{16}{9} = \frac{x}{20.6}$ $D = \sqrt{36.6^2 + 20.6^2} \approx 42$

$x \approx 36.6$

PTS: 4 REF: 011632geo TOP: Similarity KEY: basic
ANS:
\(x \) represents the distance between the lighthouse and the canoe at 5:00; \(y \) represents the distance between the lighthouse and the canoe at 5:05.
\[
\tan 6 = \frac{112 - 1.5}{x} \quad \tan(49 + 6) = \frac{112 - 1.5}{y} \quad \frac{1051.3 - 77.4}{5} \approx 195
\]
\[
x \approx 1051.3 \quad y \approx 77.4
\]

PTS: 4
REF: spr1409geo
TOP: Using Trigonometry to Find a Side

ANS:
\(\triangle LAC \) and \(\triangle DNC \) are right triangles (Definition of a right triangle). \(\triangle LAC \cong \triangle DNC \) (HL). \(\triangle LAC \) will map onto \(\triangle DNC \) after rotating \(\triangle LAC \) counterclockwise 90º about point \(C \) such that point \(L \) maps onto point \(D \).

PTS: 4
REF: spr1408geo
TOP: Triangle Congruency

ANS:
\[
\frac{\pi \cdot 11.25^2 \cdot 33.5}{231} \approx 57.7
\]

PTS: 4
REF: 061632geo
TOP: Volume

ANS:
Triangle with vertices \(A(-2,4) \), \(B(6,2) \), and \(C(1,-1) \) (given);
\[
m_{AC} = -\frac{5}{3}, \quad m_{BC} = \frac{3}{5},
\]
definition of slope; Because the slopes of the legs of the triangle are opposite reciprocals, the legs are perpendicular (definition of perpendicular); \(\angle C \) is a right angle (definition of right angle); \(\triangle ABC \) is a right triangle (if a triangle has a right angle, it is a right triangle);
\[
AC \cong BC = \sqrt{34} \text{ (distance formula); } \triangle ABC \text{ is an isosceles triangle (an isosceles triangle has two congruent sides).}
\]

PTS: 4
REF: 011932geo
TOP: Triangles in the Coordinate Plane

ANS:
\[
\frac{4\pi}{3} (2^3 - 1.5^3) \approx 19.4 \quad 19.4 \cdot 1.308 \cdot 8 \approx 203
\]

PTS: 4
REF: 081834geo
TOP: Density
A dilation preserves slope, so the slopes of \(QR \) and \(Q'R' \) are equal. Because the slopes are equal, \(Q'R' \parallel QR \).

ANS:

Since the square is inscribed, each vertex of the square is on the circle and the diagonals of the square are diameters of the circle. Therefore, each angle of the square is an inscribed angle in the circle that intercepts the circle at the endpoints of the diameters. Each angle of the square, which is an inscribed angle, measures 90 degrees. Therefore, the measure of the arc intercepted by two adjacent sides of the square is 180 degrees because it is twice the measure of its inscribed angle.

ANS:

Parallelogram \(ABCD, \ EFG \), and diagonal \(DFB \) (given); \(\angle DFE \cong \angle BFG \) (vertical angles); \(AD \parallel CB \) (opposite sides of a parallelogram are parallel); \(\angle EDF \cong \angle GFB \) (alternate interior angles are congruent); \(\triangle DEF \sim \triangle BGF \) (AA).

\[x^2 + x^2 = 58^2 \quad A = (\sqrt{1682} + 8)^2 \approx 2402.2 \]
\[2x^2 = 3364 \]
\[x = \sqrt{1682} \]

ANS:

\[x^2 + x^2 = 58^2 \quad A = (\sqrt{1682} + 8)^2 \approx 2402.2 \]
\[2x^2 = 3364 \]
\[x = \sqrt{1682} \]
Because \(\overline{AB} \cong \overline{AC} \), \(\triangle ABC \) has two congruent sides and is isosceles. Because \(\overline{AB} \cong \overline{BC} \) is not true, \(\triangle ABC \) has sides that are not congruent and \(\triangle ABC \) is not equilateral.

PTS: 4 REF: 061832geo TOP: Triangles in the Coordinate Plane

482 ANS:
2 Reflexive; 4 \(\angle BDA \cong \angle BDC \); 6 CPCTC; 7 If points \(B \) and \(D \) are equidistant from the endpoints of \(\overline{AC} \), then \(B \) and \(D \) are on the perpendicular bisector of \(\overline{AC} \).

PTS: 4 REF: 081832geo TOP: Triangle Proofs

KEY: proof

483 ANS:
\[
V = (\pi)(4^2)(9) + \left(\frac{1}{2} \right) \left(\frac{4}{3} \right)(\pi)\left(4^3 \right) \approx 586
\]

PTS: 4 REF: 011833geo TOP: Volume

KEY: compositions

484 ANS:
A dilation of \(\frac{5}{2} \) about the origin. Dilations preserve angle measure, so the triangles are similar by AA.

PTS: 4 REF: 061634geo TOP: Similarity Proofs

485 ANS:
\[
\left((10 \times 6) + \sqrt{7(7 - 6)(7 - 4)(7 - 4)} \right)(6.5) \approx 442
\]

PTS: 4 REF: 081934geo TOP: Volume

KEY: compositions

486 ANS:
As the sum of the measures of the angles of a triangle is 180°, \(\angle ABC + \angle BCA + \angle CAB = 180° \). Each interior angle of the triangle and its exterior angle form a linear pair. Linear pairs are supplementary, so \(\angle ABC + \angle FBC = 180°, \angle BCA + \angle DCA = 180°, \) and \(\angle CAB + \angle EAB = 180° \). By addition, the sum of these linear pairs is 540°. When the angle measures of the triangle are subtracted from this sum, the result is 360°, the sum of the exterior angles of the triangle.
487 ANS:

\[m_{AD} = \frac{0 - 6}{1 - -1} = -3 \]

\(AD \parallel BC \) because their slopes are equal. \(ABCD \) is a trapezoid

\[m_{BC} = \frac{-1 - 8}{6 - 3} = -3 \]

because it has a pair of parallel sides. \(AC = \sqrt{(-1 - 6)^2 + (6 - -1)^2} = \sqrt{98} \) \(ABCD \) is not an isosceles trapezoid

\(BD = \sqrt{(8 - 0)^2 + (3 - 1)^2} = \sqrt{68} \)

because its diagonals are not congruent.

PTS: 4 REF: 061932geo TOP: Quadrilaterals in the Coordinate Plane

KEY: grids

488 ANS:

Theresa. \((30 \times 15 \times (4 - 0.5)) \text{ ft}^3 \times \frac{7.48 \text{ g}}{1 \text{ ft}^3} \times \frac{3.95}{100 \text{ g}} = $465.35, \ (\pi \times 12^2 \times (4 - 0.5)) \text{ ft}^3 \times \frac{7.48 \text{ g}}{1 \text{ ft}^3} \times \frac{200}{6000 \text{ g}} = $394.79 \)

PTS: 4 REF: 011933geo TOP: Volume KEY: cylinders

489 ANS:

Circle \(O \), tangent \(EC \) to diameter \(AC \), chord \(BC \parallel DE \), and chord \(AB \) (given); \(\angle B \) is a right angle (an angle inscribed in a semi-circle is a right angle); \(EC \perp OC \) (a radius drawn to a point of tangency is perpendicular to the tangent); \(\angle ECA \) is a right angle (perpendicular lines form right angles); \(\angle B \cong \angle ECA \) (all right angles are congruent); \(\angle BCA \cong \angle CAE \) (the transversal of parallel lines creates congruent alternate interior angles);

\(\triangle ABC \sim \triangle ECA \) (AA);

\(\frac{BC}{CA} = \frac{AB}{EC} \) (Corresponding sides of similar triangles are in proportion).

PTS: 4 REF: 081733geo TOP: Circle Proofs

490 ANS:

A dilation of 3 centered at \(A \). A dilation preserves angle measure, so the triangles are similar.

PTS: 4 REF: 011832geo TOP: Dilations

491 ANS:

\[\tan x = \frac{12}{75} \quad \tan y = \frac{72}{75} \]

\[43.83 - 9.09 \approx 34.7 \]

\[x \approx 9.09 \quad y \approx 43.83 \]

PTS: 4 REF: 081634geo TOP: Using Trigonometry to Find an Angle
\[\cos 54 = \frac{4.5}{m} \quad \tan 54 = \frac{h}{4.5} \]

\[m \approx 7.7 \quad h \approx 6.2 \]

PTS: 4 \quad REF: 011834geo \quad TOP: Using Trigonometry to Find a Side

ANS:

\[
\begin{align*}
\text{SAS} & \cong \text{SAS}
\end{align*}
\]

PTS: 4 \quad REF: 011634geo \quad TOP: Constructions

KEY: congruent and similar figures

\[RS \text{ and } TV \text{ bisect each other at point } X; \quad TR \text{ and } SV \text{ are drawn (given)}; \quad TX \cong X \text{ and } RX \cong X \text{ (segment bisectors create two congruent segments)}; \quad \angle TXR \cong \angle VXS \text{ (vertical angles are congruent)}; \quad \triangle TXR \cong \triangle VXS \text{ (SAS)}; \quad \angle T \cong \angle V \text{ (CPCTC)}; \quad TR \parallel SV \text{ (a transversal that creates congruent alternate interior angles cuts parallel lines)}.\]

PTS: 4 \quad REF: 061733geo \quad TOP: Triangle Proofs

KEY: proof

\[\text{The length of } \overline{A'C} \text{ is twice } \overline{AC}. \]

PTS: 4 \quad REF: 081632geo \quad TOP: Constructions

KEY: congruent and similar figures
496 ANS:

\[20000 \text{ g} \left(\frac{1 \text{ ft}^3}{7.48 \text{ g}} \right) = 2673.8 \text{ ft}^3 \]

\[2673.8 = \pi r^2 (34.5) \quad 9.9 + 1 = 10.9 \]

\[r \approx 4.967 \]

\[d \approx 9.9 \]

PTS: 4 REF: 061734geo TOP: Volume KEY: cylinders

497 ANS:

Translations preserve distance. If point \(D \) is mapped onto point \(A \), point \(F \) would map onto point \(C \).

\(\triangle DEF \cong \triangle ABC \) as \(\overline{AC} \cong \overline{DF} \) and points are collinear on line \(\ell \) and a reflection preserves distance.

PTS: 4 REF: 081534geo TOP: Triangle Congruency

498 ANS:

Yes, because a dilation preserves angle measure.

PTS: 4 REF: 081932geo TOP: Constructions KEY: congruent and similar figures

499 ANS:

\[M \left(\frac{4 + 0}{2}, \frac{6 - 1}{2} \right) = M \left(\frac{2}{2}, \frac{5}{2} \right) \]

\[m = \frac{6 - (-1)}{4 - 0} = \frac{7}{4} \quad m_{\perp} = \frac{-4}{7} \]

\[y - 2.5 = \frac{-4}{7} (x - 2) \]

The diagonals, \(\overline{MT} \) and \(\overline{AH} \), of rhombus \(MATH \) are perpendicular bisectors of each other.

PTS: 4 REF: fall1411geo TOP: Quadrilaterals in the Coordinate Plane KEY: grids

500 ANS:

\[V = \pi (10)^2 (18) = 1800 \pi \text{ in}^3 \]

\[1800 \pi \text{ in}^3 \left(\frac{1 \text{ ft}^3}{12^3 \text{ in}^3} \right) = \frac{25}{24} \pi \text{ ft}^3 \]

\[\frac{25}{24} \pi (95.46)(0.85) \approx 266 \]

\[266 + 270 = 536 \]

PTS: 4 REF: 061834geo TOP: Density
Geometry 6 Point Regents Exam Questions

Answer Section

501 ANS:

\[m_{\overline{TS}} = \frac{-10}{6} = -\frac{5}{3} \quad m_{\overline{SR}} = \frac{3}{5} \]

Since the slopes of \(\overline{TS} \) and \(\overline{SR} \) are opposite reciprocals, they are perpendicular and form a right angle. \(\triangle RST \) is a right triangle because \(\angle S \) is a right angle. \(P(0,9) \) \[m_{\overline{RP}} = \frac{-10}{6} = -\frac{5}{3} \quad m_{\overline{PT}} = \frac{3}{5} \]

Since the slopes of all four adjacent sides (\(\overline{TS}, \overline{SR}, \overline{RP}, \overline{PT} \) and \(\overline{TS}, \overline{RP}, \overline{PT} \)) are opposite reciprocals, they are perpendicular and form right angles. Quadrilateral \(RSTP \) is a rectangle because it has four right angles.

![Diagram of RSTP with right angles at R, S, T, and P.]

PTS: 6
REF: 061536geo
TOP: Quadrilaterals in the Coordinate Plane
KEY: grids

502 ANS:

Quadrilateral \(ABCD \) with diagonal \(\overline{AC} \), segments \(GH \) and \(EF \), \(\overline{AE} \cong \overline{CG} \), \(\overline{BE} \cong \overline{DG} \), \(\overline{AH} \cong \overline{CF} \), and \(\overline{AD} \cong \overline{CB} \) (given); \(\overline{HF} \cong \overline{HF}, \overline{AC} \cong \overline{AC} \) (reflexive property); \(\overline{AH} + \overline{HF} \cong \overline{CF} + \overline{HF} \), \(\overline{AE} + \overline{BE} \cong \overline{CG} + \overline{DG} \) (segment addition); \(\triangle ABC \cong \triangle CDA \) (SSS); \(\angle EAF \cong \angle GCH \) (CPCTC); \(\triangle AEF \cong \triangle CGH \) (SAS); \(\overline{EF} \cong \overline{GH} \) (CPCTC).

PTS: 6
REF: 011935geo
TOP: Quadrilateral Proofs

503 ANS:

Circle \(O \), chords \(\overline{AB} \) and \(\overline{CD} \) intersect at \(E \) (Given); Chords \(\overline{CB} \) and \(\overline{AD} \) are drawn (auxiliary lines drawn); \(\angle CEB \cong \angle AED \) (vertical angles); \(\angle C \cong \angle A \) (Inscribed angles that intercept the same arc are congruent); \(\triangle BCE \sim \triangle DAE \) (AA); \(\frac{AE}{CE} = \frac{ED}{EB} \) (Corresponding sides of similar triangles are proportional); \(AE \cdot EB = CE \cdot ED \) (The product of the means equals the product of the extremes).

PTS: 6
REF: 081635geo
TOP: Circle Proofs

504 ANS:

\[\tan 15^\circ = \frac{6250}{x} \quad \tan 52^\circ = \frac{6250}{y} \quad 23325.3 - 4883 = 18442 \quad \frac{18442 \text{ ft}}{1 \text{ min}} \left(\frac{1 \text{ mi}}{5280 \text{ ft}} \right) \left(\frac{60 \text{ min}}{1 \text{ h}} \right) \approx 210 \]

\[x \approx 23325.3 \quad y \approx 4883 \]

PTS: 6
REF: 061736geo
TOP: Using Trigonometry to Find a Side
KEY: advanced
ANS: Parallelogram $ABCD$, $BE \perp CED$, $DF \perp BFC$, $CE \cong CF$ (given). $\angle BEC \cong \angle DFC$ (perpendicular lines form right angles, which are congruent). $\angle FCD \cong \angle BEC$ (reflexive property). $\angle BEC \cong \angle DFC$ (ASA). $BC \cong CD$ (CPCTC). $ABCD$ is a rhombus (a parallelogram with consecutive congruent sides is a rhombus).

PTS: 6 REF: 081535geo TOP: Quadrilateral Proofs

ANS: $\triangle PAT$ is an isosceles triangle because sides \overline{AP} and \overline{AT} are congruent ($\sqrt{3^2 + 11^2} = \sqrt{7^2 + 9^2} = \sqrt{130}$). $R(2,9)$. Quadrilateral $PART$ is a parallelogram because the opposite sides are parallel since they have equal slopes

\[(m_{AB} = \frac{4}{6} = \frac{2}{3}; \ m_{PT} = \frac{4}{6} = \frac{2}{3}; \ m_{PA} = -\frac{11}{3}; \ m_{RT} = \frac{11}{3})\]

PTS: 6 REF: 011835geo TOP: Quadrilaterals in the Coordinate Plane

KEY: grids

ANS: $AB = \sqrt{(-5 - 1)^2 + (3 - 2)^2} = \sqrt{37}$, $BC = \sqrt{(-5 - 6)^2 + (3 - 3)^2} = \sqrt{37}$ (because $AB = BC$, $\triangle ABC$ is isosceles). $AD = \sqrt{(1 - 0)^2 + (2 - 4)^2} = \sqrt{37}$, $CD = \sqrt{(-6 - 0)^2 + (-3 - 4)^2} = \sqrt{37}$, $m_{AB} = \frac{3 - 2}{-5 - 1} = -\frac{1}{6}$, $m_{CB} = \frac{3 - 3}{-5 - 6} = 6$ ($ABCD$ is a square because all four sides are congruent, consecutive sides are perpendicular since slopes are opposite reciprocals and so $\angle B$ is a right angle).

PTS: 6 REF: 081935geo TOP: Quadrilaterals in the Coordinate Plane

KEY: grids
It is given that point D is the image of point A after a reflection in line CH. It is given that CH is the perpendicular bisector of BCE at point C. Since a bisector divides a segment into two congruent segments at its midpoint, $BC \cong EC$. Point E is the image of point B after a reflection over the line CH, since points B and E are equidistant from point C and it is given that $CH \perp BE$. Point C is on CH, and therefore, point C maps to itself after the reflection over CH. Since all three vertices of triangle ABC map to all three vertices of triangle DEC under the same line reflection, then $\triangle ABC \cong \triangle DEC$ because a line reflection is a rigid motion and triangles are congruent when one can be mapped onto the other using a sequence of rigid motions.

Similar triangles are required to model and solve a proportion.
\[
\frac{x + 5}{1.5} = \frac{x}{1}
\]
\[
1.5x = x + 1.5x - 5
\]
\[
x = 5
\]
\[
10 + 5 = 15
\]
512 ANS:
\[\tan 47 = \frac{x}{8.5} \]
Cone: \[V = \frac{1}{3} \pi (8.5)^2 (9.115) \approx 689.6 \]
Cylinder: \[V = \pi (8.5)^2 (25) \approx 5674.5 \]
Hemisphere:
\[x \approx 9.115 \]
\[V = \frac{1}{2} \left(\frac{4}{3} \pi (8.5)^3 \right) \approx 1286.3 \]
689.6 + 5674.5 + 1286.3 \approx 7650
No, because 7650 \cdot 62.4 = 477,360
477,360 \cdot .85 = 405,756, which is greater than 400,000.

PTS: 6 REF: 061535geo TOP: Density

513 ANS:
\[\tan 3.47 = \frac{M}{6336} \]
\[\tan 0.64 = \frac{A}{20,493} \]
\[M \approx 384 \]
\[4960 + 384 = 5344 \]
\[A \approx 229 \]
\[5344 - 229 = 5115 \]

PTS: 6 REF: fall1413geo TOP: Using Trigonometry to Find a Side
KEY: advanced

514 ANS:
\[V = \frac{1}{3} \pi \left(\frac{8.3}{2} \right)^2 (10.2) + \frac{1}{2} \cdot \frac{4}{3} \pi \left(\frac{8.3}{2} \right)^3 \approx 183.961 + 149.693 \approx 333.65 \text{ cm}^3 \]
333.65 \times 50 = 16682.7 \text{ cm}^3 \]
\[16682.7 \times 0.697 = 11627.8 \text{ g} \]
\[11.6278 \times 3.83 = \$44.53 \]

PTS: 6 REF: 081636geo TOP: Density

515 ANS:
Parallelogram \(ABCD, BF \perp AFD, \) and \(DE \perp BEC \) (given); \(BC \parallel AD \) (opposite sides of a \(\square \) are \(\parallel \)); \(BE \parallel FD \) (parts of \(\parallel \) lines are \(\parallel \)); \(BF \parallel DE \) (two lines \(\perp \) to the same line are \(\parallel \)); \(BEDF \) is \(\square \) (a quadrilateral with both pairs of opposite sides \(\parallel \)) is a \(\square \); \(\angle DEB \) is a right \(\angle \) (\(\perp \) lines form right \(\angle \)s); \(BEDF \) is a rectangle (a \(\square \) with one right \(\angle \) is a rectangle).

PTS: 6 REF: 061835geo TOP: Quadrilateral Proofs
\[\sqrt{(8 - 3)^2 + (3 - 2)^2} = \sqrt{50} \quad \sqrt{(1 - 8)^2 + (4 - 3)^2} = \sqrt{50} \quad \sqrt{(-4 - 1)^2 + (-1 - 4)^2} = \sqrt{50} \]

\[\sqrt{(-4 - 3)^2 + (-1 - 2)^2} = \sqrt{50} \]

\[PQRS \] is a rhombus because all sides are congruent. \(m_{\overline{PQ}} = \frac{8 - 3}{3 - 2} = \frac{5}{1} = 5 \)

\[m_{\overline{QR}} = \frac{1 - 8}{4 - 3} = -7 \] Because the slopes of adjacent sides are not opposite reciprocals, they are not perpendicular and do not form a right angle. Therefore \(PQRS \) is not a square.

PTS: 6

C: \(V = \pi(26.7)^2(750) - \pi(24.2)^2(750) = 95,437.5\pi \)

\[95,437.5\pi \text{ cm}^3 \left(\frac{2.7 \text{ g}}{\text{cm}^3} \right) \left(\frac{1 \text{ kg}}{1000 \text{ g}} \right) \left(\frac{\$0.38}{\text{kg}} \right) = \$307.62 \]

P: \(V = 40^2(750) - 35^2(750) = 281,250 \)

\[281,250 \text{ cm}^3 \left(\frac{2.7 \text{ g}}{\text{cm}^3} \right) \left(\frac{1 \text{ kg}}{1000 \text{ g}} \right) \left(\frac{\$0.38}{\text{kg}} \right) = \$288.56 \]

PTS: 6
\[m_{\overline{MH}} = \frac{6}{10} = \frac{3}{5}, \quad m_{\overline{AT}} = \frac{6}{10} = \frac{3}{5}, \quad m_{\overline{MA}} = -\frac{5}{3}, \quad m_{\overline{HT}} = -\frac{5}{3}; \quad \overline{MH} \parallel \overline{AT} \text{ and } \overline{MA} \parallel \overline{HT}. \]

\(MATH \) is a parallelogram since both sides of opposite sides are parallel. \(m_{\overline{MA}} = -\frac{5}{3}, \quad m_{\overline{AT}} = \frac{3}{5} \). Since the slopes are negative reciprocals, \(\overline{MA} \perp \overline{AT} \) and \(\angle A \) is a right angle. \(MATH \) is a rectangle because it is a parallelogram with a right angle.

Quadrilateral \(ABCD \) with diagonals \(\overline{AC} \) and \(\overline{BD} \) that bisect each other, and \(\angle 1 \cong \angle 2 \) (given); quadrilateral \(ABCD \) is a parallelogram (the diagonals of a parallelogram bisect each other); \(\overline{AB} \parallel \overline{CD} \) (opposite sides of a parallelogram are parallel); \(\angle 1 \cong \angle 3 \) and \(\angle 2 \cong \angle 4 \) (alternate interior angles are congruent); \(\angle 2 \cong \angle 3 \) and \(\angle 3 \cong \angle 4 \) (substitution); \(\triangle ACD \) is an isosceles triangle (the base angles of an isosceles triangle are congruent); \(\overline{AD} \cong \overline{DC} \) (the sides of an isosceles triangle are congruent); quadrilateral \(ABCD \) is a rhombus (a rhombus has consecutive congruent sides); \(\overline{AE} \perp \overline{BE} \) (the diagonals of a rhombus are perpendicular); \(\angle BEA \) is a right angle (perpendicular lines form a right angle); \(\triangle AEB \) is a right triangle (a right triangle has a right angle).

Circle \(O \), secant \(\overline{ACD} \), tangent \(\overline{AB} \) (Given). Chords \(\overline{BC} \) and \(\overline{BD} \) are drawn (Auxiliary lines). \(\angle A \cong \angle A, \quad \overline{BC} \cong \overline{BC} \) (Reflexive property). \(m\angle BDC = \frac{1}{2} m\overline{BC} \) (The measure of an inscribed angle is half the measure of the intercepted arc). \(m\angle CBA = \frac{1}{2} m\overline{BC} \) (The measure of an angle formed by a tangent and a chord is half the measure of the intercepted arc). \(\angle BDC \cong \angle CBA \) (Angles equal to half of the same arc are congruent). \(\triangle ABC \sim \triangle ADB \) (AA). \(\frac{AB}{AC} = \frac{AD}{AB} \) (Corresponding sides of similar triangles are proportional). \(AC \cdot AD = AB^2 \) (In a proportion, the product of the means equals the product of the extremes).

\(\text{PTS: 6} \quad \text{REF: spr1413geo} \quad \text{TOP: Circle Proofs} \)
521 ANS:
\[
\begin{align*}
\tan 52.8 &= \frac{h}{x} \\
x \tan 52.8 &= x \tan 34.9 + 8 \tan 34.9 \\
\tan 34.9 &= \frac{h}{x + 8} \\
h &= (x + 8) \tan 34.9 \\
h &= x \tan 52.8 - x \tan 34.9 = 8 \tan 34.9 \\
x &\approx 11.86 \\
\tan 34.9 &= \frac{8 \tan 34.9}{x \tan 52.8 - x \tan 34.9} \\
x &\approx 9
\end{align*}
\]

PTS: 6 REF: 011636geo TOP: Using Trigonometry to Find a Side KEY: advanced

522 ANS:
Isosceles trapezoid $ABCD$, $\angle CDE \cong \angle DCE$, $AE \perp DE$, and $BE \perp CE$ (given); $AD \cong BC$ (congruent legs of isosceles trapezoid); $\angle DEA$ and $\angle CEB$ are right angles (perpendicular lines form right angles); $\angle DEA \cong \angle CEB$ (all right angles are congruent); $\angle CDA \cong \angle DCB$ (base angles of an isosceles trapezoid are congruent); $\angle CDA - \angle CDE \cong \angle DCB - \angle DCE$ (subtraction postulate); $\triangle ADE \cong \triangle BCE$ (AAS); $EA \cong EB$ (CPCTC);

$\angle EDA \cong \angle ECB$
$\triangle AEB$ is an isosceles triangle (an isosceles triangle has two congruent sides).

PTS: 6 REF: 081735geo TOP: Quadrilateral Proofs KEY: compositions

523 ANS:
Parallelogram $ANDR$ with AW and DE bisecting NWD and REA at points W and E (Given). $AN \cong RD$, $AR \cong DN$ (Opposite sides of a parallelogram are congruent). $AE = \frac{1}{2} AR$, $WD = \frac{1}{2} DN$, so $AE \cong WD$ (Definition of bisect and division property of equality). $AR \parallel DN$ (Opposite sides of a parallelogram are parallel). $AWDE$ is a parallelogram (Definition of parallelogram). $RE = \frac{1}{2} AR$, $NW = \frac{1}{2} DN$, so $RE \cong NW$ (Definition of bisect and division property of equality). $ED \cong AW$ (Opposite sides of a parallelogram are congruent). $\triangle ANW \cong \triangle DRE$ (SSS).

PTS: 6 REF: 011635geo TOP: Quadrilateral Proofs

524 ANS:
\[
\begin{align*}
\tan 16.5 &= \frac{x}{13.5} \\
x &\approx 4 \\
9 \times 16 \times 4.5 &= 648 \\
3752 - (35 \times 16 \times .5) &= 3472 \\
13.5 \times 16 \times 4.5 &= 972 \\
3472 \times 7.48 &\approx 25971 \\
4 + 4.5 &= 8.5 \\
\frac{1}{2} \times 13.5 \times 16 \times 4 &= 432 \\
\frac{25971}{10.5} &\approx 2473.4 \\
12.5 \times 16 \times 8.5 &= \frac{1700}{3752} \\
\frac{2473.4}{60} &\approx 41
\end{align*}
\]

PTS: 6 REF: 081736geo TOP: Volume KEY: compositions
\[V = \frac{1}{3} \pi \left(\frac{3}{2} \right)^2 \cdot 8 \approx 18.85 \cdot 100 = 1885 \cdot 0.52 \cdot 0.10 = 98.02 \cdot 1.95(100) - (37.83 + 98.02) = 59.15 \]

PTS: 6 REF: 081536geo TOP: Density