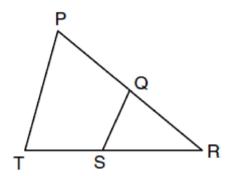
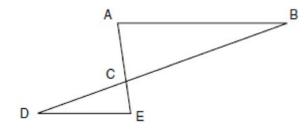
G.SRT.A.3: Similarity Proofs

1 In the diagram below of $\triangle PRT$, Q is a point on \overline{PR} , S is a point on \overline{TR} , \overline{QS} is drawn, and $\angle RPT \cong \angle RSQ$.



Which reason justifies the conclusion that $\triangle PRT \sim \triangle SRQ$?

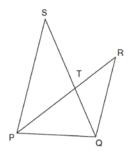
- 1) AA
- 2) ASA
- 3) SAS
- 4) SSS
- 2 In the diagram of $\triangle ABC$ and $\triangle EDC$ below, \overline{AE} and \overline{BD} intersect at C, and $\angle CAB \cong \angle CED$.



Which method can be used to show that $\triangle ABC$ must be similar to $\triangle EDC$?

- 1) SAS
- 2) AA
- 3) SSS
- 4) HL

3 In the diagram below, \overline{SQ} and \overline{PR} intersect at T, \overline{PQ} is drawn, and $\overline{PS} \parallel \overline{QR}$.

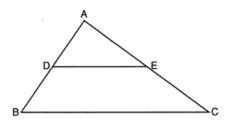


What technique can be used to prove that $\triangle PST \sim \triangle RQT$?

- 1) SAS
- 2) SSS
- 3) ASA
- 4) AA
- 4 In triangles ABC and DEF, AB = 4, AC = 5, DE = 8, DF = 10, and $\angle A \cong \angle D$. Which method could be used to prove $\triangle ABC \sim \triangle DEF$?
 - 1) AA
 - 2) SAS
 - 3) SSS
 - 4) ASA

Regents Exam Questions G.SRT.A.3: Similarity Proofs www.jmap.org

5 In the diagram below of $\triangle ABC$, D and E are the midpoints of \overline{AB} and \overline{AC} , respectively, and \overline{DE} is drawn.



I. AA similarity

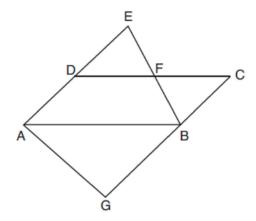
II. SSS similarity

III. SAS similarity

Which methods could be used to prove

 $\triangle ABC \sim \triangle ADE$?

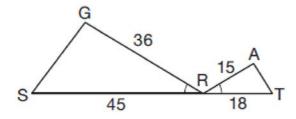
- 1) I and II, only
- 2) II and III, only
- 3) I and III, only
- 4) I, II, and III
- 6 In the diagram below, $\overline{AB} \parallel \overline{DFC}$, $\overline{EDA} \parallel \overline{CBG}$, and \overline{EFB} and \overline{AG} are drawn.



Which statement is always true?

- 1) $\triangle DEF \cong \triangle CBF$
- 2) $\triangle BAG \cong \triangle BAE$
- 3) $\triangle BAG \sim \triangle AEB$
- 4) $\triangle DEF \sim \triangle AEB$

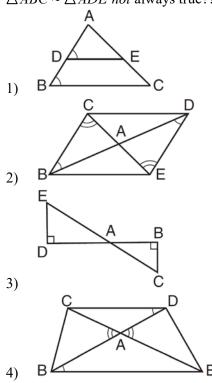
7 In the diagram below, $\angle GRS \cong \angle ART$, GR = 36, SR = 45, AR = 15, and RT = 18.



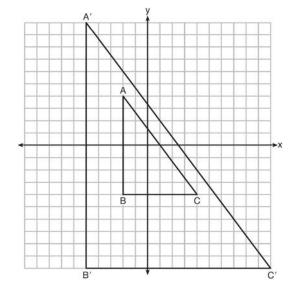
Which triangle similarity statement is correct?

- 1) $\triangle GRS \sim \triangle ART$ by AA.
- 2) $\triangle GRS \sim \triangle ART$ by SAS.
- 3) $\triangle GRS \sim \triangle ART$ by SSS.
- 4) $\triangle GRS$ is not similar to $\triangle ART$.
- 8 In $\triangle ABC$ and $\triangle DEF$, $\frac{AC}{DF} = \frac{CB}{FE}$. Which additional information would prove $\triangle ABC \sim \triangle DEF$?
 - 1) AC = DF
 - 2) CB = FE
 - 3) $\angle ACB \cong \angle DFE$
 - 4) $\angle BAC \cong \angle EDF$

9 For which diagram is the statement $\triangle ABC \sim \triangle ADE$ not always true??

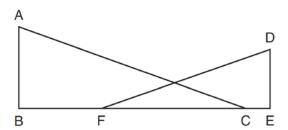


10 In the diagram below, $\triangle A'B'C'$ is the image of $\triangle ABC$ after a transformation.

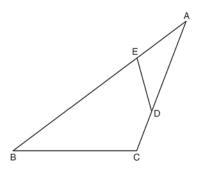


Describe the transformation that was performed. Explain why $\triangle A'B'C \sim \triangle ABC$.

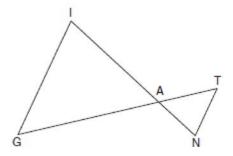
In the diagram below, \overline{BFCE} , $\overline{AB} \perp \overline{BE}$, $\overline{DE} \perp \overline{BE}$, and $\angle BFD \cong \angle ECA$. Prove that $\triangle ABC \sim \triangle DEF$.



12 The diagram below shows $\triangle ABC$, with \overline{AEB} , \overline{ADC} , and $\angle ACB \cong \angle AED$. Prove that $\triangle ABC$ is similar to $\triangle ADE$.

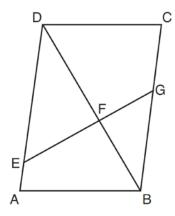


13 In the diagram below, \overline{GI} is parallel to \overline{NT} , and \overline{IN} intersects \overline{GT} at A.



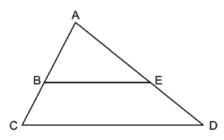
Prove: $\triangle GIA \sim \triangle TNA$

14 Given: Parallelogram *ABCD*, \overline{EFG} , and diagonal \overline{DFB}



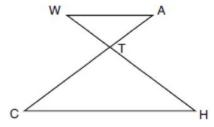
Prove: $\triangle DEF \sim \triangle BGF$

15 Given: $\triangle ACD$ with \overline{ABC} , \overline{AED} , and $\overline{BE} \parallel \overline{CD}$

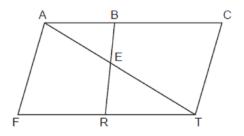


Prove: $AB \bullet AD = AE \bullet AC$

16 In the accompanying diagram, $\overline{WA} \parallel \overline{CH}$ and \overline{WH} and \overline{AC} intersect at point T. Prove that (WT)(CT) = (HT)(AT).



17 In the diagram below of quadrilateral FACT, \overline{BR} intersects diagonal \overline{AT} at E, $\overline{AF} \parallel \overline{CT}$, and $\overline{AF} \cong \overline{CT}$.



Prove: (AB)(TE) = (AE)(TR)

G.SRT.A.3: Similarity Proofs

Answer Section

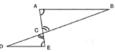
1 ANS: 1

 $\triangle PRT$ and $\triangle SRQ$ share $\angle R$ and it is given that $\angle RPT \cong \angle RSQ$.

REF: fall0821ge

2 ANS: 2

 $\angle ACB$ and $\angle ECD$ are congruent vertical angles and $\angle CAB \cong \angle CED$.

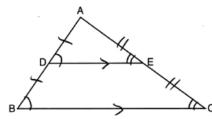


REF: 060917ge

- 3 ANS: 4 4 ANS: 2
 - REF: 061324ge

REF: 011019ge

5 ANS: 4



AA from diagram; SSS as the three corresponding sides are proportional;

SAS as two corresponding sides are proportional and an angle is equal.

REF: 012324geo

- 6 ANS: 4
 - AA

REF: 061809geo

7 ANS: 4

$$\frac{36}{45} \neq \frac{15}{18}$$

$$\frac{4}{5} \neq \frac{5}{6}$$

REF: 081709geo

8 ANS: 3

REF: 011209ge

9 ANS: 4

REF: 011528ge

10 ANS:

A dilation of $\frac{5}{2}$ about the origin. Dilations preserve angle measure, so the triangles are similar by AA.

REF: 061634geo

11 ANS:

 $\angle B$ and $\angle E$ are right angles because of the definition of perpendicular lines. $\angle B \cong \angle E$ because all right angles are congruent. $\angle BFD$ and $\angle DFE$ are supplementary and $\angle ECA$ and $\angle ACB$ are supplementary because of the definition of supplementary angles. $\angle DFE \cong \angle ACB$ because angles supplementary to congruent angles are congruent. $\triangle ABC \sim \triangle DEF$ because of AA.

REF: 011136ge

12 ANS:

 $\angle ACB \cong \angle AED$ is given. $\angle A \cong \angle A$ because of the reflexive property. Therefore $\triangle ABC \sim \triangle ADE$ because of AA.

REF: 081133ge

13 ANS:

 \overline{GI} is parallel to \overline{NT} , and \overline{IN} intersects at A (given); $\angle I \cong \angle N$, $\angle G \cong \angle T$ (paralleling lines cut by a transversal form congruent alternate interior angles); $\triangle GIA \sim \triangle TNA$ (AA).

REF: 011729geo

14 ANS:

Parallelogram ABCD, \overline{EFG} , and diagonal \overline{DFB} (given); $\angle DFE \cong \angle BFG$ (vertical angles); $\overline{AD} \parallel \overline{CB}$ (opposite sides of a parallelogram are parallel); $\angle EDF \cong \angle GBF$ (alternate interior angles are congruent); $\triangle DEF \sim \triangle BGF$ (AA).

REF: 061633geo

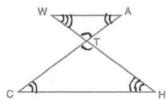
15 ANS:

1) $\triangle ACD$ with \overline{ABC} , \overline{AED} , and $\overline{BE} \parallel \overline{CD}$ (Given); 2) $\angle ABE \cong \angle ACD$ and $\angle AEB \cong \angle ADC$ (A transversal crossing parallel lines creates congruent corresponding angles; 3) $\triangle ABE \cong \triangle ACD$ (AA); 4) $\frac{AB}{AC} = \frac{AE}{AD}$ (Corresponding sides of similar triangles are proportional); 5) $AB \bullet AD = AE \bullet AC$ (Product of the means equals the product of the extremes)

REF: 012534geo

16 ANS:

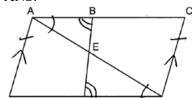
 $\angle WTA$ and $\angle HTC$ are congruent vertical angles. Since $\overline{WA} \parallel \overline{CH}$, $\angle WHC$ and $\angle AWH$ are alternate interior angles and congruent and $\angle ACH$ and $\angle WAC$ are alternate interior angles and congruent. Therefore $\triangle TCH \sim \triangle TAW$ by AA. Because corresponding sides of similar triangles are in proportion, $\frac{WH}{AT} = \frac{HT}{CT}$.



Cross-multiplying, (WT)(CT) = (HT)(AT).

REF: 010833b

17 ANS:



Quadrilateral FACT, \overline{BR} intersects diagonal \overline{AT} at E, $\overline{AF} \parallel \overline{CT}$, and $\overline{AF} \cong \overline{CT}$ (Given); FACT is a parallelogram (A quadrilateral with one pair of opposite sides parallel and congruent is a parallelogram); $\overline{AC} \cong \overline{FT}$ (Opposite sides of a parallelogram are parallel); $\angle BAE \cong \angle RTE$, $\angle ABE \cong \angle TRE$ (Parallel lines cut by a transversal form alternate interior angles that are congruent); $\triangle ABE \sim \triangle TRE$ (AA); $\overline{AB} = \overline{TE}$ (Corresponding sides of similar triangles are proportional); (AB)(TE) = (AE)(TR) (Product of the means equals the product of the extremes).

REF: 082335geo