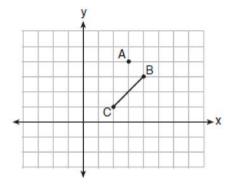
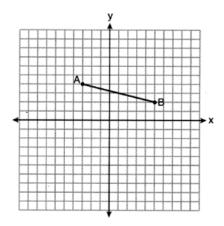
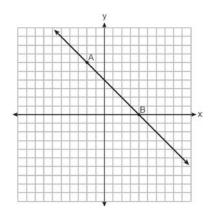

G.SRT.A.1: Line Dilations 1b


- 1 A three-inch line segment is dilated by a scale factor of 6 and centered at its midpoint. What is the length of its image?
- 2 Line segment A'B', whose endpoints are (4,-2) and (16,14), is the image of \overline{AB} after a dilation of $\frac{1}{2}$ centered at the origin. What is the length of \overline{AB} ?
- 3 In the diagram below, \overline{CD} is the image of \overline{AB} after a dilation of scale factor k with center E.

Which ratio is equal to the scale factor k of the dilation?


4 After a dilation centered at the origin, the image of \overline{CD} is $\overline{C'D'}$. If the coordinates of the endpoints of these segments are C(6,-4), D(2,-8), C'(9,-6), and D'(3,-12), the scale factor of the dilation is

- 5 After a dilation with center (0,0), the image of \overline{DB} is $\overline{D'B'}$. If DB = 4.5 and D'B' = 18, the scale factor of this dilation is
- 6 The line represented by 2y = x + 8 is dilated by a scale factor of k centered at the origin, such that the image of the line has an equation of $y \frac{1}{2}x = 2$. What is the scale factor?
- 7 On the graph below, point A(3,4) and \overline{BC} with coordinates B(4,3) and C(2,1) are graphed.


What are the coordinates of B' and C' after \overline{BC} undergoes a dilation centered at point A with a scale factor of 2?

8 On the set of axes below, the endpoints of \overline{AB} have coordinates A(-3,4) and B(5,2).

If \overline{AB} is dilated by a scale factor of 2 centered at (3,5), what are the coordinates of the endpoints of its image, $\overline{A'B'}$?

9 On the set of axes below, \overrightarrow{AB} is drawn and passes through A(-2,6) and B(4,0).

If \overrightarrow{CD} is the image of \overrightarrow{AB} after a dilation with a scale factor of $\frac{1}{2}$ centered at the origin, which equation represents \overrightarrow{CD} ?

10	The equation of line h is $2x + y = 1$. Line m is the
	image of line h after a dilation of scale factor 4
	with respect to the origin. What is the equation of
	the line <i>m</i> ?

- 11 The equation of line t is 3x y = 6. Line m is the image of line t after a dilation with a scale factor of $\frac{1}{2}$ centered at the origin. What is an equation of the line m?
- 12 The line y = 2x 4 is dilated by a scale factor of $\frac{3}{2}$ and centered at the origin. Which equation represents the image of the line after the dilation?
- 13 What is an equation of the image of the line $y = \frac{3}{2}x 4$ after a dilation of a scale factor of $\frac{3}{4}$ centered at the origin?
- 14 The line whose equation is 6x + 3y = 3 is dilated by a scale factor of 2 centered at the point (0,0). An equation of its image is
- 15 Line y = 3x 1 is transformed by a dilation with a scale factor of 2 and centered at (3, 8). The line's image is
- 16 Line MN is dilated by a scale factor of 2 centered at the point (0,6). If \overrightarrow{MN} is represented by y = -3x + 6, which equation can represent $\overrightarrow{M'N'}$, the image of \overrightarrow{MN} ?

G.SRT.A.1: Line Dilations 1b

Answer Section

1 ANS: 18 inches $3 \times 6 = 18$

REF: 061602geo

2 ANS:

40

$$\sqrt{(32-8)^2 + (28-4)^2} = \sqrt{576+1024} = \sqrt{1600} = 40$$

REF: 081621geo

3 ANS:

 $\frac{EC}{EA}$

REF: 061518geo

4 ANS:

 $\frac{3}{2}$

$$\frac{9}{6} = \frac{3}{2}$$

REF: 061905geo

5 ANS:

4

$$\frac{18}{4.5} = 4$$

REF: 011901geo

6 ANS:

$$k = \frac{1}{2}$$

$$y = \frac{1}{2}x + 4 \quad \frac{2}{4} = \frac{1}{2}$$

$$y = \frac{1}{2}x + 2$$

REF: 012008geo

7 ANS:

$$B'(5,2)$$
 and $C'(1,-2)$

$$B: (4-3,3-4) \to (1,-1) \to (2,-2) \to (2+3,-2+4)$$

$$C \colon (2-3,1-4) \to (-1,-3) \to (-2,-6) \to (-2+3,-6+4)$$

REF: 011713geo

8 ANS:

$$A'(-9,3)$$
 and $B'(7,-1)$

$$A: (-3-3,4-5) \to (-6,-1) \to (-12,-2) \to (-12+3,-2+5)$$

$$B: (5-3,2-5) \to (2,-3) \to (4,-6) \to (4+3,-6+5)$$

REF: 012322geo

9 ANS:

$$y = -x + 2$$

REF: 012416geo

10 ANS:

$$y = -2x + 4$$

The given line h, 2x + y = 1, does not pass through the center of dilation, the origin, because the y-intercept is at (0,1). The slope of the dilated line, m, will remain the same as the slope of line h, -2. All points on line h, such as (0,1), the y-intercept, are dilated by a scale factor of 4; therefore, the y-intercept of the dilated line is (0,4) because the center of dilation is the origin, resulting in the dilated line represented by the equation y = -2x + 4.

REF: spr1403geo

11 ANS:

$$y = 3x - 3$$

Another equation of line t is y = 3x - 6. $-6 \cdot \frac{1}{2} = -3$

REF: 012319geo

12 ANS:

$$y = 2x - 6$$

The line y = 2x - 4 does not pass through the center of dilation, so the dilated line will be distinct from y = 2x - 4. Since a dilation preserves parallelism, the line y = 2x - 4 and its image will be parallel, with slopes of 2. To obtain the *y*-intercept of the dilated line, the scale factor of the dilation, $\frac{3}{2}$, can be applied to the *y*-intercept,

(0,-4). Therefore, $\left(0\cdot\frac{3}{2},-4\cdot\frac{3}{2}\right)\to(0,-6)$. So the equation of the dilated line is y=2x-6.

REF: fall1403geo

13 ANS:

$$y = \frac{3}{2}x - 3$$

The line $y = \frac{3}{2}x - 4$ does not pass through the center of dilation, so the dilated line will be distinct from $y = \frac{3}{2}x - 4$. Since a dilation preserves parallelism, the line $y = \frac{3}{2}x - 4$ and its image will be parallel, with slopes of $\frac{3}{2}$. To obtain the *y*-intercept of the dilated line, the scale factor of the dilation, $\frac{3}{4}$, can be applied to the *y*-intercept, (0,-4). Therefore, $\left(0,\frac{3}{4},-4,\frac{3}{4}\right) \to (0,-3)$. So the equation of the dilated line is $y = \frac{3}{2}x - 3$.

REF: 011924geo

14 ANS:

$$y = -2x + 2$$

$$3y = -6x + 3$$

$$y = -2x + 1$$

REF: 062319geo

15 ANS:

$$y = 3x - 1$$

The line y = 3x - 1 passes through the center of dilation, so the dilated line is not distinct.

REF: 081524geo

16 ANS:

$$y = -3x + 6$$

The line y = -3x + 6 passes through the center of dilation, so the dilated line is not distinct.

REF: 061824geo