G.GPE.B.4: Quadrilaterals in the Coordinate Plane 1

1 On the set of axes below, the coordinates of three vertices of trapezoid *ABCD* are A(2,1), B(5,4), and D(-2,3).

Which point could be vertex *C*?

- 1) (1,5)
- 2) (4,10)
- 3) (-1,6)
- 4) (-3,8)
- 2 A quadrilateral has vertices with coordinates (-3,1), (0,3), (5,2), and (-1,-2). Which type of quadrilateral is this?
 - 1) rhombus
 - 2) rectangle
 - 3) square
 - 4) trapezoid
- 3 The coordinates of the vertices of parallelogram CDEH are C(-5,5), D(2,5), E(-1,-1), and H(-8,-1). What are the coordinates of P, the point of intersection of diagonals \overline{CE} and \overline{DH} ?
 - 1) (-2,3)
 - 2) (-2,2)
 - 3) (-3,2)
 - 4) (-3,-2)

- 4 Rectangle *ABCD* has two vertices at coordinates A(-1,-3) and B(6,5). The slope of \overline{BC} is
 - 1) $-\frac{7}{8}$
 - 2) $\frac{7}{8}$
 - 3) $-\frac{8}{7}$
 - 4) $\frac{8}{7}$
- 5 Parallelogram ABCD has coordinates A(0,7) and C(2,1). Which statement would prove that ABCD is a rhombus?
 - 1) The midpoint of \overline{AC} is (1,4).
 - 2) The length of \overline{BD} is $\sqrt{40}$.
 - 3) The slope of \overline{BD} is $\frac{1}{3}$.
 - 4) The slope of \overline{AB} is $\frac{1}{3}$.
- 6 The diagonals of rhombus *TEAM* intersect at P(2,1). If the equation of the line that contains diagonal \overline{TA} is y = -x + 3, what is the equation of a line that contains diagonal *EM*?
 - 1) y = x 1
 - 2) y = x 3
 - 3) y = -x 1
 - 4) y = -x 3

7 In square GEOM, the coordinates of G are (2,-2) and the coordinates of O are (-4,2). Determine and state the coordinates of vertices E and M. [The use of the set of axes below is optional.]

9 Quadrilateral *NATS* has coordinates N(-4,-3), A(1,2), T(8,1), and S(3,-4). Prove quadrilateral *NATS* is a rhombus. [The use of the set of axes below is optional.]

8 The coordinates of the vertices of quadrilateral HYPE are H(-3,6), Y(2,9), P(8,-1), and E(3,-4). Prove HYPE is a rectangle. [The use of the set of axes below is optional.]

Name:

10 Parallelogram MATH has vertices M(-7,-2), A(0,4), T(9,2), and H(2,-4). Prove that parallelogram MATH is a rhombus. [The use of the set of axes below is optional.] Determine and state the area of MATH.

11 Quadrilateral PQRS has vertices P(-2,3), Q(3,8), R(4,1), and S(-1,-4). Prove that PQRS is a rhombus. Prove that PQRS is not a square. [The use of the set of axes below is optional.]

Name: _____

12 The coordinates of the vertices of quadrilateral ABCD are A(0,4), B(3,8), C(8,3), and D(5,-1). Prove that ABCD is a parallelogram, but *not* a rectangle. [The use of the set of axes below is optional.]

13 The vertices of quadrilateral MATH have coordinates M(-4,2), A(-1,-3), T(9,3), and H(6,8). Prove that quadrilateral MATH is a parallelogram. Prove that quadrilateral MATH is a rectangle. [The use of the set of axes below is optional.]

Name: _____

Riley plotted A(-1,6), B(3,8), C(6,-1), and D(1,0) to form a quadrilateral. Prove that Riley's quadrilateral ABCD is a trapezoid. [The use of the set of axes below is optional.] Riley defines an isosceles trapezoid as a trapezoid with congruent diagonals. Use Riley's definition to prove that ABCD is *not* an isosceles trapezoid.

15 Quadrilateral MATH has vertices with coordinates M(-1,7), A(3,5), T(2,-7), and H(-6,-3). Prove that quadrilateral MATH is a trapezoid. State the coordinates of point Y such that point A is the midpoint of \overline{MY} . Prove that quadrilateral MYTH is a rectangle. [The use of the set of axes below is optional.]

Name: _____

16 In the coordinate plane, the vertices of $\triangle RST$ are R(6,-1), S(1,-4), and T(-5,6). Prove that $\triangle RST$ is a right triangle. State the coordinates of point P such that quadrilateral RSTP is a rectangle. Prove that your quadrilateral RSTP is a rectangle. [The use of the set of axes below is optional.]

17 In the coordinate plane, the vertices of triangle PAT are P(-1,-6), A(-4,5), and T(5,-2). Prove that $\triangle PAT$ is an isosceles triangle. State the coordinates of R so that quadrilateral PART is a parallelogram. Prove that quadrilateral PART is a parallelogram. [The use of the set of axes below is optional.]

Name:

18 The coordinates of the vertices of $\triangle ABC$ are A(1,2), B(-5,3), and C(-6,-3). Prove that $\triangle ABC$ is isosceles. State the coordinates of point D such that quadrilateral ABCD is a square. Prove that your quadrilateral ABCD is a square. [The use of the set of axes below is optional.]

19 The coordinates of the vertices of $\triangle ABC$ are A(-2,4), B(-7,-1), and C(-3,-3). Prove that $\triangle ABC$ is isosceles. State the coordinates of $\triangle A'B'C'$, the image of $\triangle ABC$, after a translation 5 units to the right and 5 units down. Prove that quadrilateral AA'C'C is a rhombus. [The use of the set of axes below is optional.]

Regents Exam Questions G.GPE.B.4: Quadrilaterals in the Co

G.GPE.B.4: Quadrilaterals in the Coordinate Plane 1 www.jmap.org

20 Given: Triangle *DUC* with coordinates D(-3,-1), U(-1,8), and C(8,6)

Prove: $\triangle DUC$ is a right triangle

Point U is reflected over \overline{DC} to locate its image

point, *U'*, forming quadrilateral *DUCU'*. Prove quadrilateral *DUCU'* is a square.

[The use of the set of axes below is optional.]

21 In rhombus MATH, the coordinates of the endpoints of the diagonal \overline{MT} are M(0,-1) and T(4,6). Write an equation of the line that contains diagonal \overline{AH} . [Use of the set of axes below is optional.] Using the given information, explain how you know that your line contains diagonal

AH.

Name:

G.GPE.B.4: Quadrilaterals in the Coordinate Plane 1 Answer Section

$$m_{\overline{AD}} = \frac{3-1}{-2-2} = \frac{2}{-4} = -\frac{1}{2}$$
 A pair of opposite sides is parallel.

$$m_{\overline{BC}} = \frac{8-4}{-3-5} = \frac{4}{-8} = -\frac{1}{2}$$

REF: 082321geo

$$\frac{-2-1}{-1-3} = \frac{-3}{2} \quad \frac{3-2}{0-5} = \frac{1}{-5} \quad \frac{3-1}{0-3} = \frac{2}{3} \quad \frac{2--2}{5--1} = \frac{4}{6} = \frac{2}{3}$$

REF: 081522geo

$$M_x = \frac{-5 + -1}{2} = -\frac{6}{2} = -3$$
 $M_y = \frac{5 + -1}{2} = \frac{4}{2} = 2$.

REF: 081902geo

$$m_{\overline{AB}} = \frac{-3-5}{-1-6} = \frac{-8}{-7} = \frac{8}{7}$$

REF: 062315geo

$$\frac{7-1}{0-2} = \frac{6}{-2} = -3$$
 The diagonals of a rhombus are perpendicular.

REF: 011719geo

$$m_{TA} = -1$$
 $y = mx + b$

$$m_{\overline{EM}} = 1 \qquad 1 = 1(2) + b$$

REF: 081614geo

REF: 011731geo

8 ANS:

1) Quadrilateral HYPE with H(-3,6), Y(2,9), P(8,-1), and E(3,-4) (Given); 2)

Slope of \overline{HY} and \overline{PE} is $\frac{3}{5}$, slope of \overline{YP} and \overline{EH} is $-\frac{5}{3}$ (Slope determined graphically); 3) $\overline{HY} \perp \overline{YP}$, $\overline{PE} \perp \overline{EH}$,

 $\overline{YP} \perp \overline{PE}$, $\overline{EY} \perp \overline{HY}$ (The slopes of perpendicular lines are opposite reciprocals); 4) $\angle H$, $\angle Y$, $\angle P$, $\angle E$ are right angles (Perpendicular lines form right angles); 5) HYPE is a rectangle (A rectangle has four right angles).

REF: 082233geo

9 ANS:

$$\overline{AN} \cong \overline{AT} \cong \overline{TS} \cong \overline{SN}$$

Quadrilateral NATS is a rhombus

$$\sqrt{5^2 + 5^2} = \sqrt{7^2 + 1^2} = \sqrt{5^2 + 5^2} = \sqrt{7^2 + 1^2}$$

$$\sqrt{50} = \sqrt{50} = \sqrt{50} = \sqrt{50}$$

because all four sides are congruent.

REF: 012032geo

A rhombus has four congruent sides. Since each side measures $\sqrt{85}$, all four sides of MATH are congruent, and

MATH is a rhombus. $16 \times 8 - (21 + 9 + 21 + 9) = 68$

REF: 062334geo

11 ANS:

$$\overline{PQ} \sqrt{(8-3)^2 + (3-2)^2} = \sqrt{50} \overline{QR} \sqrt{(1-8)^2 + (4-3)^2} = \sqrt{50} \overline{RS} \sqrt{(-4-1)^2 + (-1-4)^2} = \sqrt{50}$$

$$\overline{PS} \sqrt{(-4-3)^2 + (-1-2)^2} = \sqrt{50} PQRS \text{ is a rhombus because all sides are congruent.} \quad m_{\overline{PQ}} = \frac{8-3}{3-2} = \frac{5}{5} = 1$$

$$m_{\overline{QR}} = \frac{1-8}{4-3} = -7 \text{ Because the slopes of adjacent sides are not opposite reciprocals, they are not perpendicular}$$

and do not form a right angle. Therefore PQRS is not a square.

REF: 061735geo

12 ANS:

 \overline{AD} and \overline{BC} have equal slope, so are parallel. \overline{AB} and \overline{CD} have equal slope, so

are parallel. Since both pairs of opposite sides are parallel, ABCD is a parallelogram. The slope of AB and BC are not opposite reciprocals, so they are not perpendicular, and so $\angle B$ is not a right angle. ABCD is not a rectangle since all four angles are not right angles.

REF: 082334geo

$$m_{\overline{MH}} = \frac{6}{10} = \frac{3}{5}, m_{\overline{AT}} = \frac{6}{10} = \frac{3}{5}, m_{\overline{MA}} = -\frac{5}{3}, m_{\overline{HT}} = -\frac{5}{3}; \overline{MH} \parallel \overline{AT} \text{ and } \overline{MA} \parallel \overline{HT}.$$

MATH is a parallelogram since both sides of opposite sides are parallel. $m_{\overline{MA}} = -\frac{5}{3}$, $m_{\overline{AT}} = \frac{3}{5}$. Since the slopes are negative reciprocals, $\overline{MA} \perp \overline{AT}$ and $\angle A$ is a right angle. MATH is a rectangle because it is a parallelogram with a right angle.

REF: 081835geo

14 ANS:

$$m_{\overline{AD}} = \frac{0-6}{1-1} = -3 \ \overline{AD} \parallel \overline{BC}$$
 because their slopes are equal. ABCD is a trapezoid

$$m_{\overline{BC}} = \frac{-1-8}{6-3} = -3$$

because it has a pair of parallel sides. $AC = \sqrt{(-1-6)^2 + (6--1)^2} = \sqrt{98}$ ABCD is not an isosceles trapezoid

$$BD = \sqrt{(8-0)^2 + (3-1)^2} = \sqrt{68}$$

because its diagonals are not congruent.

REF: 061932geo

ID: A

15 ANS:

The slope of \overline{MA} and \overline{TH} equals $-\frac{1}{2}$. Distinct lines with equal

slope are parallel. MATH is a trapezoid because it has a pair of parallel lines. (7,3). The slope of \overline{MY} and \overline{TH} equals $-\frac{1}{2}$. The slope of \overline{YT} and \overline{HM} equals 2. The slopes of each side are opposite reciprocals and therefore perpendicular. Perpendicular sides form right angles, so MYTH has four right angles and is a rectangle.

REF: 012435geo

16 ANS:

 $m_{\overline{TS}} = \frac{-10}{6} = -\frac{5}{3}$ $m_{\overline{SR}} = \frac{3}{5}$ Since the slopes of \overline{TS} and \overline{SR} are opposite reciprocals, they are perpendicular and

form a right angle. $\triangle RST$ is a right triangle because $\angle S$ is a right angle. P(0,9) $m_{\overline{RP}} = \frac{-10}{6} = -\frac{5}{3}$ $m_{\overline{PT}} = \frac{3}{5}$

Since the slopes of all four adjacent sides (\overline{TS} and \overline{SR} , \overline{SR} and \overline{RP} , \overline{PT} and \overline{TS} , \overline{RP} and \overline{PT}) are opposite reciprocals, they are perpendicular and form right angles. Quadrilateral RSTP is a rectangle because it has four right angles.

REF: 061536geo

 $\triangle PAT$ is an isosceles triangle because sides \overline{AP} and \overline{AT} are congruent ($\sqrt{3^2 + 11^2} = \sqrt{7^2 + 9^2} = \sqrt{130}$). R(2,9). Quadrilateral PART is a parallelogram because the opposite sides are parallel since they have equal slopes

$$(m_{\overline{AR}} = \frac{4}{6} = \frac{2}{3}; \ m_{\overline{PT}} = \frac{4}{6} = \frac{2}{3}; \ m_{\overline{PA}} = -\frac{11}{3}; \ m_{\overline{RT}} = -\frac{11}{3})$$

REF: 011835geo

18 ANS:

$$AB = \sqrt{(-5-1)^2 + (3-2)^2} = \sqrt{37}, BC = \sqrt{(-5-6)^2 + (3-3)^2} = \sqrt{37}$$
 (because $AB = BC, \triangle ABC$ is isosceles). $(0,-4)$. $AD = \sqrt{(1-0)^2 + (2-4)^2} = \sqrt{37}, CD = \sqrt{(-6-0)^2 + (-3-4)^2} = \sqrt{37},$

 $m_{\overline{AB}} = \frac{3-2}{-5-1} = -\frac{1}{6}, m_{\overline{CB}} = \frac{3-3}{-5-6} = 6$ (ABCD is a square because all four sides are congruent, consecutive sides

are perpendicular since slopes are opposite reciprocals and so $\angle B$ is a right angle).

REF: 081935geo

$$\sqrt{(-2-7)^2 + (4-1)^2} = \sqrt{(-2-3)^2 + (4-3)^2}$$
 Since \overline{AB} and \overline{AC} are congruent, $\triangle ABC$ is isosceles.
$$\sqrt{50} = \sqrt{50}$$

$$A'(3,-1)$$
, $B'(-2,-6)$, $C'(2,-8)$. $AC = \sqrt{50} AA' = \sqrt{(-2-3)^2 + (4--1)^2}$, $A'C' = \sqrt{50}$ (translation preserves $= \sqrt{50}$

distance), $CC' = \sqrt{(-3-2)^2 + (-3-8)^2}$ Since all four sides are congruent, AA'C'C is a rhombus.

REF: 062235geo

20 ANS:

 $m_{\overline{DU}} = \frac{9}{2} \ m_{\overline{UC}} = -\frac{2}{9}$ Since the slopes of \overline{DU} and \overline{UC} are opposite reciprocals, they are perpendicular and form a right angle. $\triangle DUC$ is a right triangle because $\angle DUC$ is a right angle. Each side of quadrilateral DUCU' is $\sqrt{9^2 + 2^2} = \sqrt{85}$. Quadrilateral DUCU' is a square because all four side are congruent and it has a right angle.

REF: 012335geo

21 ANS:

$$M\left(\frac{4+0}{2}, \frac{6-1}{2}\right) = M\left(2, \frac{5}{2}\right)$$
 $m = \frac{6-1}{4-0} = \frac{7}{4}$ $m_{\perp} = -\frac{4}{7}$ $y-2.5 = -\frac{4}{7}(x-2)$ The diagonals, \overline{MT} and \overline{AH} , of rhombus $MATH$ are perpendicular bisectors of each other.

REF: fall1411geo