Regents Exam Questions

Name: \qquad
G.GPE.B.4: Quadrilaterals in the Coordinate Plane 1 www.jmap.org

G.GPE.B.4: Quadrilaterals in the Coordinate Plane 1

1 On the set of axes below, the coordinates of three vertices of trapezoid $A B C D$ are $A(2,1), B(5,4)$, and $D(-2,3)$.

Which point could be vertex C ?

1) $(1,5)$
2) $(4,10)$
3) $(-1,6)$
4) $(-3,8)$

2 A quadrilateral has vertices with coordinates $(-3,1),(0,3),(5,2)$, and $(-1,-2)$. Which type of quadrilateral is this?

1) rhombus
2) rectangle
3) square
4) trapezoid

3 The coordinates of the vertices of parallelogram $C D E H$ are $C(-5,5), D(2,5), E(-1,-1)$, and $H(-8,-1)$. What are the coordinates of P, the point of intersection of diagonals $\overline{C E}$ and $\overline{D H}$?

1) $(-2,3)$
2) $(-2,2)$
3) $(-3,2)$
4) $(-3,-2)$

4 Rectangle $A B C D$ has two vertices at coordinates $A(-1,-3)$ and $B(6,5)$. The slope of $\overline{B C}$ is

1) $-\frac{7}{8}$
2) $\frac{7}{8}$
3) $-\frac{8}{7}$
4) $\frac{8}{7}$

5 Parallelogram $A B C D$ has coordinates $A(0,7)$ and $C(2,1)$. Which statement would prove that $A B C D$ is a rhombus?

1) The midpoint of $\overline{A C}$ is $(1,4)$.
2) The length of $\overline{B D}$ is $\sqrt{40}$.
3) The slope of $\overline{B D}$ is $\frac{1}{3}$.
4) The slope of $\overline{A B}$ is $\frac{1}{3}$.

6 The diagonals of rhombus TEAM intersect at $P(2,1)$. If the equation of the line that contains diagonal $\overline{T A}$ is $y=-x+3$, what is the equation of a line that contains diagonal $E M$?

1) $y=x-1$
2) $y=x-3$
3) $y=-x-1$
4) $y=-x-3$

Regents Exam Questions

G.GPE.B.4: Quadrilaterals in the Coordinate Plane 1 www.jmap.org

7 In square $G E O M$, the coordinates of G are $(2,-2)$ and the coordinates of O are $(-4,2)$. Determine and state the coordinates of vertices E and M. [The use of the set of axes below is optional.]

8 The coordinates of the vertices of quadrilateral HYPE are $H(-3,6), Y(2,9), P(8,-1)$, and $E(3,-4)$. Prove HYPE is a rectangle. [The use of the set of axes below is optional.]

Name: \qquad

9 Quadrilateral NATS has coordinates $N(-4,-3)$, $A(1,2), T(8,1)$, and $S(3,-4)$. Prove quadrilateral NATS is a rhombus. [The use of the set of axes below is optional.]

Regents Exam Questions

G.GPE.B.4: Quadrilaterals in the Coordinate Plane 1 www.jmap.org

10 Parallelogram MATH has vertices $M(-7,-2)$, $A(0,4), T(9,2)$, and $H(2,-4)$. Prove that parallelogram MATH is a rhombus. [The use of the set of axes below is optional.] Determine and state the area of MATH.

Name: \qquad

11 Quadrilateral $P Q R S$ has vertices $P(-2,3), Q(3,8)$, $R(4,1)$, and $S(-1,-4)$. Prove that $P Q R S$ is a rhombus. Prove that $P Q R S$ is not a square. [The use of the set of axes below is optional.]

Regents Exam Questions

G.GPE.B.4: Quadrilaterals in the Coordinate Plane 1 www.jmap.org

12 The coordinates of the vertices of quadrilateral $A B C D$ are $A(0,4), B(3,8), C(8,3)$, and $D(5,-1)$. Prove that $A B C D$ is a parallelogram, but not a rectangle. [The use of the set of axes below is optional.]

Name: \qquad

13 The vertices of quadrilateral $M A T H$ have coordinates $M(-4,2), A(-1,-3), T(9,3)$, and $H(6,8)$. Prove that quadrilateral MATH is a parallelogram. Prove that quadrilateral MATH is a rectangle. [The use of the set of axes below is optional.]

Regents Exam Questions

G.GPE.B.4: Quadrilaterals in the Coordinate Plane 1 www.jmap.org

14 Riley plotted $A(-1,6), B(3,8), C(6,-1)$, and $D(1,0)$ to form a quadrilateral. Prove that Riley's quadrilateral $A B C D$ is a trapezoid. [The use of the set of axes below is optional.] Riley defines an isosceles trapezoid as a trapezoid with congruent diagonals. Use Riley's definition to prove that $A B C D$ is not an isosceles trapezoid.

Name: \qquad

15 Quadrilateral MATH has vertices with coordinates $M(-1,7), A(3,5), T(2,-7)$, and $H(-6,-3)$. Prove that quadrilateral MATH is a trapezoid. State the coordinates of point Y such that point A is the midpoint of $\overline{M Y}$. Prove that quadrilateral $M Y T H$ is a rectangle. [The use of the set of axes below is optional.]

Regents Exam Questions

G.GPE.B.4: Quadrilaterals in the Coordinate Plane 1 www.jmap.org

16 In the coordinate plane, the vertices of $\triangle R S T$ are $R(6,-1), S(1,-4)$, and $T(-5,6)$. Prove that $\triangle R S T$ is a right triangle. State the coordinates of point P such that quadrilateral RSTP is a rectangle. Prove that your quadrilateral RSTP is a rectangle. [The use of the set of axes below is optional.]

Name: \qquad

17 In the coordinate plane, the vertices of triangle $P A T$ are $P(-1,-6), A(-4,5)$, and $T(5,-2)$. Prove that $\triangle P A T$ is an isosceles triangle. State the coordinates of R so that quadrilateral $P A R T$ is a parallelogram. Prove that quadrilateral $P A R T$ is a parallelogram. [The use of the set of axes below is optional.]

Regents Exam Questions

G.GPE.B.4: Quadrilaterals in the Coordinate Plane 1 www.jmap.org

18 The coordinates of the vertices of $\triangle A B C$ are $A(1,2), B(-5,3)$, and $C(-6,-3)$. Prove that $\triangle A B C$ is isosceles. State the coordinates of point D such that quadrilateral $A B C D$ is a square. Prove that your quadrilateral $A B C D$ is a square. [The use of the set of axes below is optional.]

Name: \qquad

19 The coordinates of the vertices of $\triangle A B C$ are $A(-2,4), B(-7,-1)$, and $C(-3,-3)$. Prove that $\triangle A B C$ is isosceles. State the coordinates of $\triangle A^{\prime} B^{\prime} C^{\prime}$, the image of $\triangle A B C$, after a translation 5 units to the right and 5 units down. Prove that quadrilateral $A A^{\prime} C^{\prime} C$ is a rhombus. [The use of the set of axes below is optional.]

Regents Exam Questions

G.GPE.B.4: Quadrilaterals in the Coordinate Plane 1 www.jmap.org

20 Given: Triangle $D U C$ with coordinates $D(-3,-1)$, $U(-1,8)$, and $C(8,6)$
Prove: $\triangle D U C$ is a right triangle
Point U is reflected over $\overline{D C}$ to locate its image point, U^{\prime}, forming quadrilateral $D U C U^{\prime}$.
Prove quadrilateral $D U C U^{\prime}$ is a square.
[The use of the set of axes below is optional.]

21 In rhombus MATH, the coordinates of the endpoints of the diagonal $\overline{M T}$ are $M(0,-1)$ and $T(4,6)$. Write an equation of the line that contains diagonal $\overline{A H}$. [Use of the set of axes below is optional.] Using the given information, explain how you know that your line contains diagonal $\overline{A H}$.

G.GPE.B.4: Quadrilaterals in the Coordinate Plane 1 Answer Section

1 ANS: 4
$m_{\overline{A D}}=\frac{3-1}{-2-2}=\frac{2}{-4}=-\frac{1}{2} \quad$ A pair of opposite sides is parallel.
$m_{B C}=\frac{8-4}{-3-5}=\frac{4}{-8}=-\frac{1}{2}$
REF: 082321geo
2 ANS: 4
$\frac{-2-1}{-1--3}=\frac{-3}{2} \quad \frac{3-2}{0-5}=\frac{1}{-5} \quad \frac{3-1}{0--3}=\frac{2}{3} \quad \frac{2--2}{5--1}=\frac{4}{6}=\frac{2}{3}$
REF: 081522geo
3 ANS: 3
$M_{x}=\frac{-5+-1}{2}=-\frac{6}{2}=-3 M_{y}=\frac{5+-1}{2}=\frac{4}{2}=2$.
REF: 081902geo
4 ANS: 1
$m_{\overline{A B}}=\frac{-3-5}{-1-6}=\frac{-8}{-7}=\frac{8}{7}$
REF: 062315geo
5 ANS: 3
$\frac{7-1}{0-2}=\frac{6}{-2}=-3$ The diagonals of a rhombus are perpendicular.
REF: 011719geo
6 ANS: 1

$$
\begin{array}{rlrl}
m_{\overline{T A}}=-1 & & y & =m x+b \\
m_{\overline{E M}}=1 & & 1=1(2)+b \\
& -1 & =b
\end{array}
$$

REF: 081614geo

7 ANS:

REF: 011731geo
8 ANS:

1) Quadrilateral HYPE with $H(-3,6), Y(2,9), P(8,-1)$, and $E(3,-4)$ (Given); 2)

Slope of $\overline{H Y}$ and $\overline{P E}$ is $\frac{3}{5}$, slope of $\overline{Y P}$ and $\overline{E H}$ is $-\frac{5}{3}$ (Slope determined graphically); 3) $\overline{H Y} \perp \overline{Y P}, \overline{P E} \perp \overline{E H}$, $\overline{Y P} \perp \overline{P E}, \overline{E Y} \perp \overline{H Y}$ (The slopes of perpendicular lines are opposite reciprocals); 4) $\angle H, \angle Y, \angle P, \angle E$ are right angles (Perpendicular lines form right angles); 5) HYPE is a rectangle (A rectangle has four right angles).

REF: 082233geo
9 ANS:

$$
\begin{aligned}
\overline{A N} & \cong \overline{A T} \cong \overline{T S} \cong \overline{S N} \\
\sqrt{5^{2}+5^{2}} & =\sqrt{7^{2}+1^{2}}=\sqrt{5^{2}+5^{2}}=\sqrt{7^{2}+1^{2}} \\
\sqrt{50} & =\sqrt{50}=\sqrt{50}=\sqrt{50}
\end{aligned}
$$

because all four sides are congruent.
REF: 012032geo

10 ANS:
A rhombus has four congruent sides. Since each side measures $\sqrt{85}$, all four sides of MATH are congruent, and

MATH is a rhombus. $16 \times 8-(21+9+21+9)=68$
REF: 062334geo
11 ANS:
$\overline{P Q} \sqrt{(8-3)^{2}+(3--2)^{2}}=\sqrt{50} \overline{Q R} \sqrt{(1-8)^{2}+(4-3)^{2}}=\sqrt{50} \overline{R S} \sqrt{(-4-1)^{2}+(-1-4)^{2}}=\sqrt{50}$
$\overline{P S} \sqrt{(-4-3)^{2}+(-1--2)^{2}}=\sqrt{50} P Q R S$ is a rhombus because all sides are congruent. $m_{P Q}=\frac{8-3}{3--2}=\frac{5}{5}=1$ $m_{\overline{Q R}}=\frac{1-8}{4-3}=-7$ Because the slopes of adjacent sides are not opposite reciprocals, they are not perpendicular
and do not form a right angle. Therefore $P Q R S$ is not a square.

REF: 061735geo
12 ANS:

$\overline{A D}$ and $\overline{B C}$ have equal slope, so are parallel. $\overline{A B}$ and $\overline{C D}$ have equal slope, so are parallel. Since both pairs of opposite sides are parallel, $A B C D$ is a parallelogram. The slope of $\overline{A B}$ and $\overline{B C}$ are not opposite reciprocals, so they are not perpendicular, and so $\angle B$ is not a right angle. $A B C D$ is not a rectangle since all four angles are not right angles.

REF: 082334geo

13 ANS:

$$
m_{\overline{M H}}=\frac{6}{10}=\frac{3}{5}, m_{\overline{A T}}=\frac{6}{10}=\frac{3}{5}, m_{\overline{M A}}=-\frac{5}{3}, m_{\overline{H T}}=-\frac{5}{3} ; \overline{M H} \| \overline{A T} \text { and } \overline{M A} \| \overline{H T} .
$$

$M A T H$ is a parallelogram since both sides of opposite sides are parallel. $m_{M A}=-\frac{5}{3}, m_{A T}=\frac{3}{5}$. Since the slopes are negative reciprocals, $\overline{M A} \perp \overline{A T}$ and $\angle A$ is a right angle. $M A T H$ is a rectangle because it is a parallelogram with a right angle.

REF: 081835geo
ANS:

$$
\begin{aligned}
& m_{\overline{A D}}=\frac{0-6}{1--1}=-3 \overline{A D} \| \overline{B C} \text { because their slopes are equal. } A B C D \text { is a trapezoid } \\
& m_{\overline{B C}}=\frac{-1-8}{6-3}=-3
\end{aligned}
$$

because it has a pair of parallel sides. $A C=\sqrt{(-1-6)^{2}+(6--1)^{2}}=\sqrt{98} A B C D$ is not an isosceles trapezoid

$$
B D=\sqrt{(8-0)^{2}+(3-1)^{2}}=\sqrt{68}
$$

because its diagonals are not congruent.
REF: 061932geo

15 ANS:

The slope of $\overline{M A}$ and $\overline{T H}$ equals $-\frac{1}{2}$. Distinct lines with equal slope are parallel. MATH is a trapezoid because it has a pair of parallel lines. (7,3). The slope of $\overline{M Y}$ and $\overline{T H}$ equals $-\frac{1}{2}$. The slope of $\overline{Y T}$ and $\overline{H M}$ equals 2. The slopes of each side are opposite reciprocals and therefore perpendicular. Perpendicular sides form right angles, so MYTH has four right angles and is a rectangle.

REF: 012435geo
16
$m_{\overline{T S}}=\frac{-10}{6}=-\frac{5}{3} m_{\overline{S R}}=\frac{3}{5}$ Since the slopes of $\overline{T S}$ and $\overline{S R}$ are opposite reciprocals, they are perpendicular and form a right angle. $\triangle R S T$ is a right triangle because $\angle S$ is a right angle. $P(0,9) \quad m_{R P}=\frac{-10}{6}=-\frac{5}{3} m_{P T}=\frac{3}{5}$
Since the slopes of all four adjacent sides ($\overline{T S}$ and $\overline{S R}, \overline{S R}$ and $\overline{R P}, \overline{P T}$ and $\overline{T S}, \overline{R P}$ and $\overline{P T}$) are opposite reciprocals, they are perpendicular and form right angles. Quadrilateral $R S T P$ is a rectangle because it has four right angles.

REF: 061536geo

17 ANS:
$\triangle P A T$ is an isosceles triangle because sides $\overline{A P}$ and $\overline{A T}$ are congruent $\left(\sqrt{3^{2}+11^{2}}=\sqrt{7^{2}+9^{2}}=\sqrt{130}\right)$. $R(2,9)$. Quadrilateral PART is a parallelogram because the opposite sides are parallel since they have equal slopes
$\left(m_{\overline{A R}}=\frac{4}{6}=\frac{2}{3} ; m_{\overline{P T}}=\frac{4}{6}=\frac{2}{3} ; m_{\overline{P A}}=-\frac{11}{3} ; m_{\overline{R T}}=-\frac{11}{3}\right)$

REF: 011835geo
18 ANS:
$A B=\sqrt{(-5-1)^{2}+(3-2)^{2}}=\sqrt{37}, B C=\sqrt{(-5--6)^{2}+(3--3)^{2}}=\sqrt{37}$ (because $A B=B C, \triangle A B C$ is
isosceles). $(0,-4) . A D=\sqrt{(1-0)^{2}+(2--4)^{2}}=\sqrt{37}, C D=\sqrt{(-6-0)^{2}+(-3--4)^{2}}=\sqrt{37}$,
$m_{\overline{A B}}=\frac{3-2}{-5-1}=-\frac{1}{6}, m_{\overline{C B}}=\frac{3--3}{-5--6}=6(A B C D$ is a square because all four sides are congruent, consecutive sides
are perpendicular since slopes are opposite reciprocals and so $\angle B$ is a right angle).

REF: 081935geo

19 ANS:
$\sqrt{(-2--7)^{2}+(4--1)^{2}}=\sqrt{(-2--3)^{2}+(4--3)^{2}}$ Since $\overline{A B}$ and $\overline{A C}$ are congruent, $\triangle A B C$ is isosceles.

$$
\sqrt{50}=\sqrt{50}
$$

$A^{\prime}(3,-1), B^{\prime}(-2,-6), C^{\prime}(2,-8) . A C=\sqrt{50} A A^{\prime}=\sqrt{(-2-3)^{2}+(4--1)^{2}}, A^{\prime} C^{\prime}=\sqrt{50}$ (translation preserves

$$
=\sqrt{50}
$$

distance), $C C^{\prime}=\sqrt{(-3-2)^{2}+(-3--8)^{2}}$ Since all four sides are congruent, $A A^{\prime} C^{\prime} C$ is a rhombus.

REF: 062235geo
20 ANS:
$m_{\overline{D U}}=\frac{9}{2} m_{\overline{U C}}=-\frac{2}{9}$ Since the slopes of $\overline{D U}$ and $\overline{U C}$ are opposite reciprocals, they are perpendicular and form a right angle. $\triangle D U C$ is a right triangle because $\angle D U C$ is a right angle. Each side of quadrilateral $D U C U^{\prime}$ is $\sqrt{9^{2}+2^{2}}=\sqrt{85}$. Quadrilateral $D U C U^{\prime}$ is a square because all four side are congruent and it has a right angle.

REF: 012335geo
21
$M\left(\frac{4+0}{2}, \frac{6-1}{2}\right)=M\left(2, \frac{5}{2}\right) m=\frac{6--1}{4-0}=\frac{7}{4} m_{\perp}=-\frac{4}{7} y-2.5=-\frac{4}{7}(x-2)$ The diagonals, $\overline{M T}$ and $\overline{A H}$, of rhombus MATH are perpendicular bisectors of each other.

REF: fall1411geo

