Regents Exam Questions G.GPE.A.3: Equations of Conics www.jmap.org

G.GPE.A.3: Equations of Conics

1 What is the graph of the function $y=\sqrt{4-x^{2}}$?

1) a circle whose radius is 2 and whose center is at the origin
2) a circle whose radius is 4 and whose center is at the origin
3) the upper half of a circle whose radius is 2 and whose center is at the origin
4) the upper half of a circle whose radius is 4 and whose center is at the origin

2 What is the axis of symmetry of the graph of the equation $x=y^{2}$?

1) x-axis
2) y-axis
3) line $y=x$
4) line $y=-x$

3 The graph of the equation $x^{2}+y^{2}=r^{2}$ forms

1) a circle
2) a parabola
3) a straight line
4) two intersecting lines

4 The graph of the equation $x^{2}+y^{2}=4$ can be described as a

1) line passing through points $(0,2)$ and $(2,0)$
2) parabola with its vertex at $(0,2)$
3) circle with its center at the origin and a radius of 2
4) circle with its center at the origin and a radius of 4

5 When graphed on the coordinate plane, the equations $y=2 x^{2}+4 x+5$ and $x^{2}+y^{2}=36$ form

1) a parabola and a straight line
2) a parabola and a circle
3) two parabolas
4) two circles

6 The graph of the equation $2 x^{2}-3 y^{2}=4$ forms

1) a circle
2) an ellipse
3) a hyperbola
4) a parabola

7 An object orbiting a planet travels in a path represented by the equation
$3(y+1)^{2}+5(x+4)^{2}=15$. In which type of pattern does the object travel?

1) hyperbola
2) ellipse
3) circle
4) parabola

8 A commercial artist plans to include an ellipse in a design and wants the length of the horizontal axis to equal 10 and the length of the vertical axis to equal 6 . Which equation could represent this ellipse?

1) $9 x^{2}+25 y^{2}=225$
2) $9 x^{2}-25 y^{2}=225$
3) $x^{2}+y^{2}=100$
4) $3 y=20 x^{2}$

9 Which equation, when graphed on a Cartesian coordinate plane, would best represent an elliptical racetrack?

1) $3 x^{2}+10 y^{2}=288,000$
2) $3 x^{2}-10 y^{2}=288,000$
3) $3 x+10 y=288,000$
4) $30 x y=288,000$

Regents Exam Questions G.GPE.A.3: Equations of Conics www.jmap.org

10 A designer who is planning to install an elliptical mirror is laying out the design on a coordinate grid. Which equation could represent the elliptical mirror?

1) $x^{2}=144+36 y^{2}$
2) $x^{2}+y^{2}=144$
3) $x^{2}+4 y^{2}=144$
4) $y=4 y^{2}+144$

11 Which equation represents an ellipse?

1) $3 x^{2}=4-5 y^{2}$
2) $4 x^{2}=9-4 y$
3) $6 x^{2}=9+8 y^{2}$
4) $x y=12$

12 Which graph represents the equation $\frac{x^{2}}{4}+\frac{y^{2}}{4}=1$?
1)

3)

Name: \qquad

13 Which graph represents the equation $9 x^{2}=36-4 y^{2}$?
1)

2)

3)

Regents Exam Questions G.GPE.A.3: Equations of Conics www.jmap.org

14 The accompanying diagram shows the elliptical orbit of a planet. The foci of the elliptical orbit are F_{1} and F_{2}.

If a, b, and c are all positive and $a \neq b \neq c$, which equation could represent the path of the planet?

1) $a x^{2}-b y^{2}=c^{2}$
2) $a x^{2}+b y^{2}=c^{2}$
3) $y=a x^{2}+c^{2}$
4) $x^{2}+y^{2}=c^{2}$

15 The accompanying diagram represents the elliptical path of a ride at an amusement park.

Which equation represents this path?

1) $x^{2}+y^{2}=300$
2) $y=x^{2}+100 x+300$
3) $\frac{x^{2}}{150^{2}}+\frac{y^{2}}{50^{2}}=1$
4) $\frac{x^{2}}{150^{2}}-\frac{y^{2}}{50^{2}}=1$

Name: \qquad

16 The accompanying diagram shows the construction of a model of an elliptical orbit of a planet traveling around a star. Point P and the center of the star represent the foci of the orbit.

Which equation could represent the relation shown?

1) $\frac{x^{2}}{81}+\frac{y^{2}}{225}=1$
2) $\frac{x^{2}}{225}+\frac{y^{2}}{81}=1$
3) $\frac{x^{2}}{15}+\frac{y^{2}}{9}=1$
4) $\frac{x^{2}}{15}-\frac{y^{2}}{9}=1$

Regents Exam Questions G.GPE.A.3: Equations of Conics www.jmap.org

17 An architect is designing a building to include an arch in the shape of a semi-ellipse (half an ellipse), such that the width of the arch is 20 feet and the height of the arch is 8 feet, as shown in the accompanying diagram.

Which equation models this arch?

1) $\frac{x^{2}}{100}+\frac{y^{2}}{64}=1$
2) $\frac{x^{2}}{400}+\frac{y^{2}}{64}=1$
3) $\frac{x^{2}}{64}+\frac{y^{2}}{100}=1$
4) $\frac{x^{2}}{64}+\frac{y^{2}}{400}=1$

Name: \qquad

18 A landscape architect is working on the plans for a new horse farm. He is laying out the exercise ring and racetrack on the accompanying graph. The location of the circular exercise ring, with point R as its center, has already been plotted.

Write an equation that represents the outside edge of the exercise ring. The equation of the outside edge of the racetrack is $\frac{x^{2}}{144}+\frac{y^{2}}{36}=1$. Sketch the outside edge of the racetrack on the graph.

G.GPE.A.3: Equations of Conics

Answer Section

1 ANS: 3
REF: 080804b
2 ANS: 1
If you take the square root of both sides of the equation, it becomes $\pm \sqrt{x}=y$. A square root function and its reflection are symmetric about the x-axis.

REF: 010419b
3 ANS: 1 REF: 010714a
4 ANS: 3 REF: 080528a
5 ANS: 2 REF: 080723a
6 ANS: 3 REF: 080920b
7 ANS: 2
$3(y+1)^{2}+5(x+4)^{2}=15$
$\frac{(x+4)^{2}}{3}+\frac{(y+1)^{2}}{5}=1$
REF: 080517b
8 ANS: 1
The length of the semi-major axis is half of 10 , or 5 . So $a^{2}=5^{2}=25$. The length of the semi-minor axis is half

$$
9 x^{2}+25 y^{2}=225
$$

of 6 , or 3 . So $b^{2}=5^{2}=25$.

$$
\frac{x^{2}}{25}+\frac{y^{2}}{9}=1
$$

REF: 080318b
9 ANS: 1

$$
\begin{aligned}
3 x^{2}+10 y^{2} & =288,000 \\
\frac{x^{2}}{96,000}+\frac{y^{2}}{28,800} & =1
\end{aligned}
$$

REF: 060512b
10 ANS: 3

$$
x^{2}+4 y^{2}=144
$$

$\frac{x^{2}}{144}+\frac{y^{2}}{36}=1$
REF: 080609b
11 ANS: 1 REF: 061020b
12 ANS: $1 \quad$ REF: 019724siii
13 ANS: $1 \quad$ REF: 010917b
14 ANS: 2 REF: 010410b

15 ANS: 3
The length of the semi-major axis is half of 300 , or 150 . The length of the semi-minor axis is half of 100 , or 50 .
REF: 060311b
16 ANS: 2
The length of the semi-major axis is 15 . So $a^{2}=15^{2}=225$. The length of the semi-minor axis is 9 . So $b^{2}=9^{2}=81$.

REF: 010517b
17 ANS: 1
The length of the semi-major axis is half of 20 , or 10 . So $a^{2}=10^{2}=100$. The length of the semi-minor axis is 8. So $b^{2}=8^{2}=64$.

REF: 080206b
18 ANS:
$(x-20)^{2}+(y-8)^{2}=16$

. The center of the circle is $(20,8)$ and the radius is 4 . Since $a^{2}=144$, the length of the semi-major axis is 12 . Since $b^{2}=36$, the length of the semi-minor axis is 6 .

REF: 060730b

