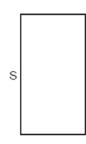
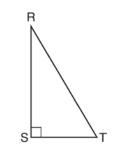

Regents Exam Questions G.GMD.B.4: Rotations of Two-Dimensional Objects

www.jmap.org

G.GMD.B.4: Rotations of Two-Dimensional Objects


1 A student has a rectangular postcard that he folds in half lengthwise. Next, he rotates it continuously about the folded edge. Which three-dimensional object below is generated by this rotation?

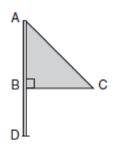
2 If the rectangle below is continuously rotated about side *w*, which solid figure is formed?



- 1) pyramid
- 2) rectangular prism
- 3) cone
- 4) cylinder
- 3 The rectangle drawn below is continuously rotated about side *S*.

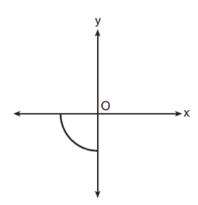
Which three-dimensional figure is formed by this rotation?

- 1) rectangular prism
- 2) square pyramid
- 3) cylinder
- 4) cone
- 4 Which object is formed when right triangle RST shown below is rotated around leg \overline{RS} ?


- 1) a pyramid with a square base
- 2) an isosceles triangle
- 3) a right triangle
- 4) a cone

Name:

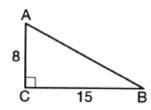
Regents Exam Questions


G.GMD.B.4: Rotations of Two-Dimensional Objects www.jmap.org

5 Triangle *ABC* represents a metal flag on pole *AD*, as shown in the accompanying diagram. On a windy day the triangle spins around the pole so fast that it looks like a three-dimensional shape.

Which shape would the spinning flag create?

- 1) sphere
- 2) pyramid
- 3) right circular cylinder
- 4) cone
- 6 Circle *O* is centered at the origin. In the diagram below, a quarter of circle *O* is graphed.



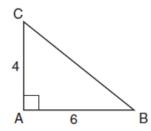
Which three-dimensional figure is generated when the quarter circle is continuously rotated about the *y*-axis?

- 1) cone
- 2) sphere
- 3) cylinder
- 4) hemisphere
- 7 If a rectangle is continuously rotated around one of its sides, what is the three-dimensional figure formed?
 - 1) rectangular prism
 - 2) cylinder
 - 3) sphere
 - 4) cone

Name:

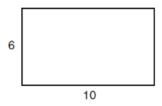
- 8 If an equilateral triangle is continuously rotated around one of its medians, which 3-dimensional object is generated?
 - 1) cone
 - 2) pyramid
 - 3) prism
 - 4) sphere
- 9 A circle is continuously rotated about its diameter. Which three-dimensional object will be formed?
 - 1) cone
 - 2) prism
 - 3) sphere
 - 4) cylinder
- 10 As shown in the diagram below, right triangle *ABC* has side lengths of 8 and 15.

If the triangle is continuously rotated about \overline{AC} , the resulting figure will be


- a right cone with a radius of 15 and a height of 8
- a right cone with a radius of 8 and a height of 15
- a right cylinder with a radius of 15 and a height of 8
- 4) a right cylinder with a radius of 8 and a height of 15
- 11 An isosceles right triangle whose legs measure 6 is continuously rotated about one of its legs to form a three-dimensional object. The three-dimensional object is a
 - 1) cylinder with a diameter of 6
 - 2) cylinder with a diameter of 12
 - 3) cone with a diameter of 6
 - 4) cone with a diameter of 12

Regents Exam Questions

G.GMD.B.4: Rotations of Two-Dimensional Objects www.jmap.org

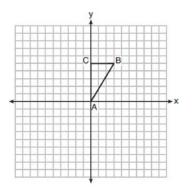

- 12 Square *MATH* has a side length of 7 inches. Which three-dimensional object will be formed by continuously rotating square *MATH* around side \overline{AT} ?
 - 1) a right cone with a base diameter of 7 inches
 - 2) a right cylinder with a diameter of 7 inches
 - 3) a right cone with a base radius of 7 inches
 - 4) a right cylinder with a radius of 7 inches
- 13 A rectangle with dimensions of 4 feet by 7 feet is continuously rotated about one of its 4-foot sides. The resulting three-dimensional object is a
 - 1) cylinder with a height of 7 feet and a base radius of 4 feet.
 - 2) cylinder with a height of 4 feet and a base radius of 7 feet.
 - 3) cone with a height of 7 feet and a base radius of 7 feet.
 - 4) cone with a height of 4 feet and a base radius of 7 feet.
- 14 Which three-dimensional figure will result when a rectangle 6 inches long and 5 inches wide is continuously rotated about the longer side?
 - 1) a rectangular prism with a length of 6 inches, width of 6 inches, and height of 5 inches
 - 2) a rectangular prism with a length of 6 inches, width of 5 inches, and height of 5 inches
 - a cylinder with a radius of 5 inches and a height of 6 inches
 - 4) a cylinder with a radius of 6 inches and a height of 5 inches
- 15 A square with a side length of 3 is continuously rotated about one of its sides. The resulting three-dimensional object is a
 - 1) cube with a volume of 9.
 - 2) cube with a volume of 27.
 - 3) cylinder with a volume of 27π .
 - 4) cylinder with a volume of 54π .

16 In the diagram below, right triangle *ABC* has legs whose lengths are 4 and 6.

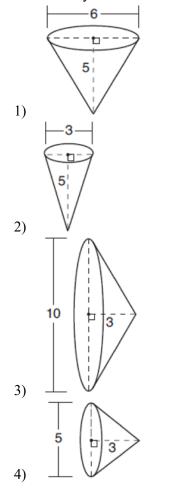
What is the volume of the three-dimensional object formed by continuously rotating the right triangle around \overline{AB} ?

- 32π
- 48π
- 96π
- 4) 144π
- 17 A rectangle whose length and width are 10 and 6, respectively, is shown below. The rectangle is continuously rotated around a straight line to form an object whose volume is 150π .

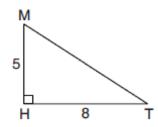
Which line could the rectangle be rotated around?


- 1) a long side
- 2) a short side
- 3) the vertical line of symmetry
- 4) the horizontal line of symmetry

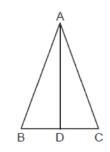
Name:


Regents Exam Questions

G.GMD.B.4: Rotations of	Two-Dimensional Objects
www.jmap.org	


18 Triangle *ABC*, with vertices at A(0,0), B(3,5), and C(0,5), is graphed on the set of axes shown below.

Which figure is formed when $\triangle ABC$ is rotated continuously about \overline{BC} ?



19 In right triangle *MTH* shown below, $m \angle H = 90^{\circ}$, HT = 8, and HM = 5.

Determine and state, to the *nearest tenth*, the volume of the three-dimensional solid formed by rotating $\triangle MTH$ continuously around \overline{MH} .

20 In isosceles triangle *ABC* shown below, $\overline{AB} \cong \overline{AC}$, and altitude \overline{AD} is drawn.

The length of \overline{AD} is 12 cm and the length of \overline{BC} is 10 cm. Determine and state, to the *nearest cubic centimeter*, the volume of the solid formed by continuously rotating $\triangle ABC$ about \overline{AD} .

Name:

G.GMD.B.4: Rotations of Two-Dimensional Objects Answer Section

_			
1	ANS: 3	REF:	061601geo
2	ANS: 4	REF:	081503geo
	ANS: 3	REF:	082307geo
4		REF:	e
5	ANS: 4	REF:	010417a
6		REF:	011810geo
7	ANS: 2	REF:	061903geo
8		REF:	081603geo
9	-	REF:	012302geo
10		REF:	062208geo
11	ANS: 4	REF:	081803geo
12		REF:	081911geo
	ANS: 2	REF:	U
	ANS: 3	REF:	011911geo
15	ANS: 3		
	$V = \pi(3)^2(3) = 27\pi$		
	REF: 012507geo		
16	ANS: 1		
	$V = \frac{1}{3}\pi(4)^2(6) = 32\pi$	τ	
	3		
	REF: 061718geo		
17	ANS: 3		
- ,	$v = \pi r^2 h$ (1) 6 ² .	10 = 30	50
	$150\pi = \pi r^2 h$ (2) 10^2	$\cdot 6 = 60$	00
	$150 = r^2 h (3) \ 5^2 \cdot 6 = 150$		
	(4) $3^2 \cdot 10 = 900$		
	$(4) 3^2$	10 = 90	00
	(4) 3^2 ·	10 = 90	00
		10 = 90	00
18	(4) 3 ² · REF: 081713geo ANS: 3		
	REF: 081713geo		00 061816geo
	REF: 081713geo ANS: 3 ANS:		
	REF: 081713geo ANS: 3		
	REF: 081713geo ANS: 3 ANS: $\frac{1}{3} \pi \times 8^2 \times 5 \approx 335.1$		
19	REF: 081713geo ANS: 3 ANS: $\frac{1}{3} \pi \times 8^2 \times 5 \approx 335.1$ REF: 082226geo		
	REF: 081713geo ANS: 3 ANS: $\frac{1}{3} \pi \times 8^2 \times 5 \approx 335.1$ REF: 082226geo ANS:	REF:	
19	REF: 081713geo ANS: 3 ANS: $\frac{1}{3} \pi \times 8^2 \times 5 \approx 335.1$ REF: 082226geo ANS:	REF:	
19	REF: 081713geo ANS: 3 ANS: $\frac{1}{3} \pi \times 8^2 \times 5 \approx 335.1$ REF: 082226geo	REF:	
19	REF: 081713geo ANS: 3 ANS: $\frac{1}{3} \pi \times 8^2 \times 5 \approx 335.1$ REF: 082226geo ANS:	REF:	