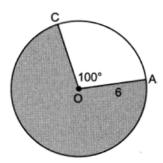

G.C.B.5: Sectors

1 A circle with a diameter of 10 cm and a central angle of 30° is drawn below.

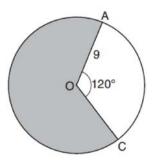
What is the area, to the *nearest tenth of a square centimeter*, of the sector formed by the 30° angle?

- 1) 5.2
- 2) 6.5
- 3) 13.1
- 4) 26.2
- 2 In the diagram below of circle O, GO = 8 and $m\angle GOJ = 60^{\circ}$.



What is the area, in terms of π , of the shaded region?

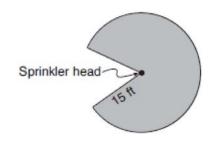
- 1) $\frac{4\pi}{3}$
- 2) $\frac{20\pi}{3}$
- 3) $\frac{32\pi}{3}$


4)
$$\frac{160\pi}{3}$$

3 In circle *O* below, OA = 6, and m $\angle COA = 100^{\circ}$.

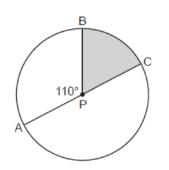
What is the area of the shaded sector?

- 1) 10*π*
- 2) 26π 2) 10π
- 3) $\frac{10\pi}{3}$
- 4) $\frac{26\pi}{3}$
- 4 Circle *O* with a radius of 9 is drawn below. The measure of central angle AOC is 120° .



What is the area of the shaded sector of circle O?

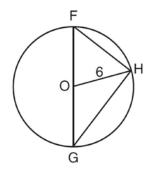
- 1) 6*π*
- 12π
- 3) 27*π*
- 4) 54 π


Name:

5 Cerise waters her lawn with a sprinkler that sprays water in a circular pattern at a distance of 15 feet from the sprinkler. The sprinkler head rotates through an angle of 300°, as shown by the shaded area in the accompanying diagram.

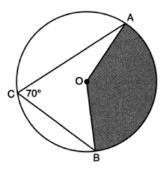
What is the area of the lawn, to the *nearest square foot*, that receives water from this sprinkler?

- 1) 79
- 2) 94
- 3) 589
- 4) 707
- 6 In circle P below, diameter \overline{AC} and radius \overline{BP} are drawn such that $m \angle APB = 110^{\circ}$.



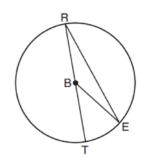
If AC = 12, what is the area of shaded sector BPC?

- 1) $\frac{7}{6}\pi$
- 0
- 2) 7π
- 3) 11π
- 4) 28π

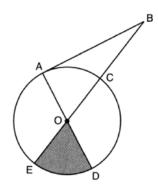

Name: _____

7 Triangle FGH is inscribed in circle O, the length of radius \overline{OH} is 6, and $\overline{FH} \cong \overline{OG}$.

What is the area of the sector formed by angle *FOH*?

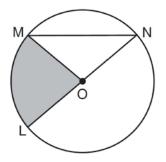

- 1) 2*π*
- 2) $\frac{3}{2}\pi$
- 3) $\bar{6}\pi$
- 4) 24π
- 8 In the diagram below of circle O, \overline{AC} and \overline{BC} are chords, and $\underline{m}\angle ACB = 70^{\circ}$.

If OA = 9, the area of the shaded sector *AOB* is


- 1) 3.5*π*
- 2) 7*π*
- 3) 15.75*π*
- 4) 31.5*π*

9 In circle *B* below, diameter \overline{RT} , radius \overline{BE} , and chord \overline{RE} are drawn.

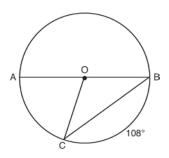
If $m \angle TRE = 15^{\circ}$ and BE = 9, then the area of sector *EBR* is


- 1) 3.375*π*
- 2) 6.75π
- 3) 33.75*π*
- 4) 37.125*π*
- 10 In the diagram below of circle *O*, tangent \overline{AB} is drawn from external point *B*, and secant \overline{BCOE} and diameter \overline{AOD} are drawn.

If $m \angle OBA = 36^{\circ}$ and OC = 10, what is the area of shaded sector *DOE*?

- 1) $\frac{3\pi}{10}$
- 1) 10
- 3π
- 3) 10*π*
- 4) 15*π*

11 In the diagram below of circle *O*, the area of the shaded sector *LOM* is 2π cm².



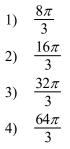
If the length of \overline{NL} is 6 cm, what is m $\angle N$?

- 1) 10°
- 2) 20°
- 3) 40°
- 4) 80°

Name:

12 In circle O, diameter \overline{AB} , chord \overline{BC} , and radius \overline{OC} are drawn, and the measure of arc BC is 108°.

Some students wrote these formulas to find the area of sector *COB*:

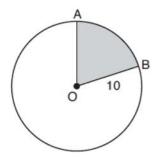

Amy
$$\frac{3}{10} \cdot \pi \cdot (BC)^2$$

Beth
$$\frac{108}{360} \cdot \pi \cdot (OC)^2$$

Carl
$$\frac{3}{10} \cdot \pi \cdot (\frac{1}{2}AB)^2$$

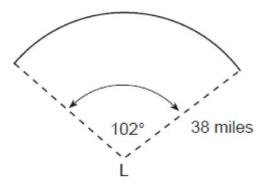
Dex
$$\frac{108}{360} \cdot \pi \cdot \frac{1}{2}(AB)^2$$

Which students wrote correct formulas?

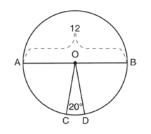

- 1) Amy and Dex
- 2) Beth and Carl
- 3) Carl and Amy
- 4) Dex and Beth
- 13 The area of a sector of a circle with a radius measuring 15 cm is 75π cm². What is the measure of the central angle that forms the sector?
 - 1) 72°
 - 2) 120°
 - 3) 144°
 - 4) 180°

Name:

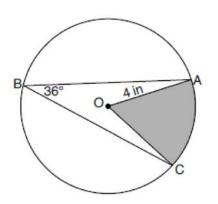
14 What is the area of a sector of a circle with a radius of 8 inches and formed by a central angle that measures 60°?



15 In the diagram below, circle *O* has a radius of 10.

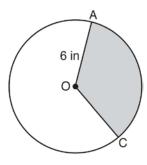

If $\widehat{\mathbf{mAB}} = 72^\circ$, find the area of shaded sector *AOB*, in terms of π .

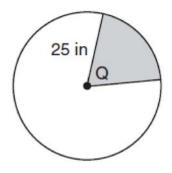
16 The diagram below models the projection of light from a lighthouse, L. The sector has a radius of 38 miles and spans 102° .


Determine and state the area of the sector, to the *nearest square mile*.

17 In the diagram below of circle *O*, diameter \overline{AB} and radii \overline{OC} and \overline{OD} are drawn. The length of \overline{AB} is 12 and the measure of $\angle COD$ is 20 degrees.

If $\widehat{AC} \cong \widehat{BD}$, find the area of sector *BOD* in terms of π .


18 In the diagram below of circle O, the measure of inscribed angle ABC is 36° and the length of \overline{OA} is 4 inches.


Determine and state, to the *nearest tenth of a square inch*, the area of the shaded sector.

Name:

19 In the diagram below of circle *O*, the area of the shaded sector *AOC* is 12π in² and the length of \overline{OA} is 6 inches. Determine and state m $\angle AOC$.

20 In the diagram below, the circle has a radius of 25 inches. The area of the *unshaded* sector is 500π in².

Determine and state the degree measure of angle Q, the central angle of the shaded sector.

- 21 A circle has a radius of 6.4 inches. Determine and state, to the *nearest square inch*, the area of a sector whose arc measures 80°.
- 22 Determine and state, in terms of π , the area of a sector that intercepts a 40° arc of a circle with a radius of 4.5.

G.C.B.5: Sectors Answer Section

1 ANS: 2 $\frac{30}{360}(5)^2(\pi) \approx 6.5$ REF: 081818geo 2 ANS: 4 $\frac{300}{360} \cdot 8^2 \pi = \frac{160\pi}{3}$ REF: 011721geo 3 ANS: 2 $\left(\frac{360-100}{360}\right)(\pi)\left(6^2\right) = 26\pi$ REF: 062411geo 4 ANS: 4 $\left(\frac{360-120}{360}\right)(\pi)(9^2) = 54\pi$ REF: 081912geo 5 ANS: 3 The area of the entire circle is $15^2 \pi = 225\pi$. The shaded area has an area of $225\pi \times \frac{300}{360} \approx 589$ REF: 060716b 6 ANS: 2 $\frac{70}{360} \cdot 6^2 \pi = 7\pi$ REF: 082309geo 7 ANS: 3 $\frac{60}{360} \cdot 6^2 \pi = 6\pi$ REF: 081518geo 8 ANS: 4 $\frac{140}{360} \cdot 9^2 \pi = 31.5\pi$ REF: 012317geo

9 ANS: 3

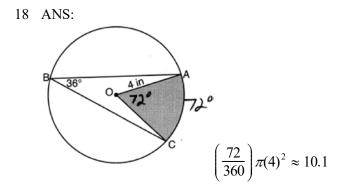
$$\frac{150}{360} \cdot 9^{2} \pi = 33.75 \pi$$
REF: 012013geo
10 ANS: 4

$$\frac{54}{360} \cdot 10^{2} \pi = 15 \pi$$
REF: 062224geo
11 ANS: 3

$$\frac{x}{360} \cdot 3^{2} \pi = 2\pi \ 180 - 80 = 100$$

$$x = 80 \ \frac{180 - 100}{2} = 40$$
REF: 011612geo
12 ANS: 2 REF: 081619geo
13 ANS: 2

$$\frac{x}{360} (15)^{2} \pi = 75 \pi$$


$$x = 120$$
REF: 011914geo
14 ANS: 3

$$\frac{60}{360} \cdot 8^{2} \pi = \frac{1}{6} \cdot 64 \pi = \frac{32 \pi}{3}$$
REF: 061624geo
15 ANS:

$$\frac{72}{360} (\pi) (10^{2}) = 20 \pi$$
REF: 061928geo
16 ANS:

$$\frac{102}{360} (\pi) (38^{2}) \approx 1285$$
REF: 012426geo
17 ANS:

$$\frac{\left(\frac{180 - 20}{2}\right)}{360} \times \pi(6)^{2} = \frac{80}{360} \times 36\pi = 8\pi$$
REF: spr1410geo

19 ANS:

$$A = 6^{2} \pi = 36\pi \quad 36\pi \cdot \frac{x}{360} = 12\pi$$
$$x = 360 \cdot \frac{12}{36}$$
$$x = 120$$

REF: 061529geo

20 ANS:

$$\frac{Q}{360}(\pi)(25^2) = (\pi)(25^2) - 500\pi$$

 $Q = \frac{125\pi(360)}{625\pi}$
 $Q = 72$
REF: 011828geo
21 ANS:

 $\frac{80}{360}\cdot\pi(6.4)^2\approx29$

REF: 062328geo

22 ANS:

 $\frac{40}{360} \cdot \pi (4.5)^2 = 2.25\pi$

REF: 061726geo