1. If θ is an angle in standard position and $P(-3,4)$ is a point on the terminal side of θ, what is the value of $\sin \theta$?
 1) $\frac{3}{5}$
 2) $\frac{-3}{5}$
 3) $\frac{4}{5}$
 4) $\frac{-4}{5}$

2. If the terminal side of angle θ, in standard position, passes through point $(-4,3)$, what is the numerical value of $\sin \theta$?
 1) $\frac{3}{5}$
 2) $\frac{4}{5}$
 3) $\frac{-3}{5}$
 4) $\frac{-4}{5}$

3. If the terminal side of angle θ passes through point $(-4,3)$, what is the value of $\cos \theta$?
 1) $\frac{3}{5}$
 2) $\frac{-3}{5}$
 3) $\frac{4}{5}$
 4) $\frac{-4}{5}$

4. A circle centered at the origin has a radius of 10 units. The terminal side of an angle, θ, intercepts the circle in Quadrant II at point C. The y-coordinate of point C is 8. What is the value of $\cos \theta$?
 1) $\frac{3}{5}$
 2) $\frac{3}{4}$
 3) $\frac{3}{5}$
 4) $\frac{4}{5}$

5. Circle O has a radius of 2 units. An angle with a measure of $\frac{\pi}{6}$ radians is in standard position. If the terminal side of the angle intersects the circle at point B, what are the coordinates of B?
 1) $\left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right)$
 2) $\left(\sqrt{3}, 1\right)$
 3) $\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$
 4) $\left(1, \sqrt{3}\right)$

6. Angle θ is in standard position and $(-4,0)$ is a point on the terminal side of θ. What is the value of $\sec \theta$?
 1) -4
 2) -1
 3) 0
 4) undefined
7 If the terminal side of angle \(\theta \) passes through point \((-3,-4)\), what is the value of sec \(\theta \)?

1) \(\frac{5}{3} \)
2) \(-\frac{5}{3} \)
3) \(\frac{5}{4} \)
4) \(-\frac{5}{4} \)

8 The origin of a coordinate grid is labeled \(A \). Line segment \(AB \) forms an angle of 30° with the \(x \)-axis. If \(AB = 8 \), the coordinates of \(B \) are:

1) \((6,4) \)
2) \((8 \cos 30°, 8 \sin 30°) \)
3) \((8 \sin 30°, 8 \cos 30°) \)
4) \((4, 4\sqrt{3}) \)

9 An angle, \(\theta \), is in standard position and its terminal side passes through the point \((2,-1)\). Find the exact value of sin \(\theta \).

10 If \(\theta \) is an angle in standard position and its terminal side passes through the point \((-3,2)\), find the exact value of csc \(\theta \).

11 Determine the exact value of csc \(P \) if \(P \) is an angle in standard position and its terminal side passes through the point \((5,-8)\).
F.TF.A.2: Determining Trigonometric Functions 4
Answer Section

1 ANS: 3
\[
\sin \theta = \frac{y}{\sqrt{x^2 + y^2}} = \frac{4}{\sqrt{(-3)^2 + 4^2}} = \frac{4}{5}
\]
REF: 010616b

2 ANS: 1
A reference triangle can be sketched using the coordinates \((-4,3)\) in the second quadrant to find the value of \(\sin \theta\).

3 ANS: 4
\[
\cos \theta = \frac{x}{\sqrt{x^2 + y^2}} = \frac{-4}{\sqrt{(-4)^2 + 3^2}} = \frac{-4}{5}
\]
REF: 068628siii

4 ANS: 1

5 ANS: 2
\[
x = 2 \cdot \frac{\sqrt{3}}{2} = \sqrt{3} \quad y = 2 \cdot \frac{1}{2} = 1
\]
REF: 061525a2

6 ANS: 2
\[
\sec \theta = \frac{x}{\sqrt{x^2 + y^2}} = \frac{\sqrt{(-4)^2 + 0^2}}{-4} = \frac{4}{-4} = -1
\]
REF: 011520a2
7 ANS: 2
\[\cos \theta = \frac{3}{5} \quad \sec \theta = -\frac{5}{3} \]

REF: 011621a2

8 ANS: 2 REF: fall9920b

9 ANS:
\[\frac{-1}{\sqrt{2^2 + (-1)^2}} = -\frac{1}{\sqrt{5}} \]

REF: 061832aii

10 ANS:
\[\frac{\sqrt{13}}{2} \cdot \sin \theta = \frac{y}{\sqrt{x^2 + y^2}} = \frac{2}{\sqrt{(-3)^2 + 2^2}} = \frac{2}{\sqrt{13}} \cdot \csc \theta = \frac{\sqrt{13}}{2} \]

REF: fall0933a2

11 ANS:
\[\sin P = \frac{y}{\sqrt{x^2 + y^2}} = \frac{-8}{\sqrt{5^2 + (-8)^2}} = \frac{-8}{\sqrt{89}} \quad \csc P = \frac{\sqrt{89}}{8} \]

REF: 081634a2