Regents Exam Questions

Name: \qquad
F.TF.A.2: Determining Trigonometric Functions 4 www.jmap.org

F.TF.A.2: Determining Trigonometric Functions 4

1 If θ is an angle in standard position and $P(-3,4)$ is a point on the terminal side of θ, what is the value of $\sin \theta$?

1) $\frac{3}{5}$
2) $-\frac{3}{5}$
3) $\frac{4}{5}$
4) $-\frac{4}{5}$

2 If the terminal side of angle θ, in standard position, passes through point $(-4,3)$, what is the numerical value of $\sin \theta$?

1) $\frac{3}{5}$
2) $\frac{4}{5}$
3) $-\frac{3}{5}$
4) $-\frac{4}{5}$

3 If the terminal side of angle θ passes through point $(-4,3)$, what is the value of $\cos \theta$?

1) $\frac{3}{5}$
2) $-\frac{3}{5}$
3) $\frac{4}{5}$
4) $-\frac{4}{5}$

4 A circle centered at the origin has a radius of 10 units. The terminal side of an angle, θ, intercepts the circle in Quadrant II at point C. The y-coordinate of point C is 8 . What is the value of $\cos \theta$?

1) $-\frac{3}{5}$
2) $-\frac{3}{4}$
3) $\frac{3}{5}$
4) $\frac{4}{5}$

5 If θ is an angle in standard position whose terminal side passes through the point $(-2,-3)$, what is the numerical value of $\tan \theta$?

1) $\frac{2}{3}$
2) $\frac{3}{2}$
3) $-\frac{2}{\sqrt{13}}$
4) $-\frac{3}{\sqrt{13}}$

Regents Exam Questions

F.TF.A.2: Determining Trigonometric Functions 4

 www.jmap.org6 Circle O has a radius of 2 units. An angle with a measure of $\frac{\pi}{6}$ radians is in standard position. If the terminal side of the angle intersects the circle at point B, what are the coordinates of B ?

1) $\left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right)$
2) $(\sqrt{3}, 1)$
3) $\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$
4) $(1, \sqrt{3})$

7 Angle θ is in standard position and $(-4,0)$ is a point on the terminal side of θ. What is the value of $\sec \theta$?

1) -4
2) -1
3) 0
4) undefined

8 If the terminal side of angle θ passes through point $(-3,-4)$, what is the value of $\sec \theta$?

1) $\frac{5}{3}$
2) $-\frac{5}{3}$
3) $\frac{5}{4}$
4) $-\frac{5}{4}$

Name: \qquad

9 The origin of a coordinate grid is labeled A. Line segment $A B$ forms an angle of 30° with the x-axis. If $A B=8$, the coordinates of B are:

1) $(6,4)$
2) $\left(8 \cos 30^{\circ}, 8 \sin 30^{\circ}\right)$
3) $\left(8 \sin 30^{\circ}, 8 \cos 30^{\circ}\right)$
4) $(4,4 \sqrt{3})$

10 An angle, θ, is in standard position and its terminal side passes through the point $(2,-1)$. Find the exact value of $\sin \theta$.

11 If θ is an angle in standard position and its terminal side passes through the point $(-3,2)$, find the exact value of $\csc \theta$.

12 Determine the exact value of $\csc P$ if P is an angle in standard position and its terminal side passes through the point $(5,-8)$.

F.TF.A.2: Determining Trigonometric Functions 4

Answer Section

1 ANS: 3
$\sin \theta=\frac{y}{\sqrt{x^{2}+y^{2}}}=\frac{4}{\sqrt{(-3)^{2}+4^{2}}}=\frac{4}{5}$
REF: 010616b
2 ANS: 1
A reference triangle can be sketched using the coordinates $(-4,3)$ in the second quadrant to find the value of $\sin \theta$.

REF: spr1503aii
3 ANS: 4
$\cos \theta=\frac{x}{\sqrt{x^{2}+y^{2}}}=\frac{-4}{\sqrt{(-4)^{2}+3^{2}}}=-\frac{4}{5}$
REF: 068628siii
4 ANS: 1
$\cos \theta=-\frac{6}{10}=-\frac{3}{5}$

REF: 061617aii
5 ANS: 2
$\sqrt{(-2)^{2}+(-3)^{2}}=\sqrt{13} ; \tan \theta=\frac{\sin \theta}{\cos \theta}=\frac{\frac{-3}{\sqrt{13}}}{\frac{-2}{\sqrt{13}}}=\frac{3}{2}$
REF: 062304aii

6 ANS: 2
$x=2 \cdot \frac{\sqrt{3}}{2}=\sqrt{3} \quad y=2 \cdot \frac{1}{2}=1$
REF: 061525a2
7 ANS: 2
$\sec \theta=\frac{\sqrt{x^{2}+y^{2}}}{x}=\frac{\sqrt{(-4)^{2}+0^{2}}}{-4}=\frac{4}{-4}=-1$
REF: 011520a2
8 ANS: 2
$\cos \theta=-\frac{3}{5} \quad \sec \theta=-\frac{5}{3}$
REF: 011621a2
9 ANS: 2 REF: fall9920b
10 ANS:
$\frac{-1}{\sqrt{2^{2}+(-1)^{2}}}=-\frac{1}{\sqrt{5}}$
REF: 061832aii
11 ANS:
$\frac{\sqrt{13}}{2} \cdot \sin \theta=\frac{y}{\sqrt{x^{2}+y^{2}}}=\frac{2}{\sqrt{(-3)^{2}+2^{2}}}=\frac{2}{\sqrt{13}} . \csc \theta=\frac{\sqrt{13}}{2}$.
REF: fall0933a2
12 ANS:
$\sin P=\frac{y}{\sqrt{x^{2}+y^{2}}}=\frac{-8}{\sqrt{5^{2}+(-8)^{2}}}=\frac{-8}{\sqrt{89}} \csc P=-\frac{\sqrt{89}}{8}$
REF: 081634a2

