Algebra II Practice F.LE.A.4: Exponential Growth and Decay www.jmap.org

1. The half-life of carbon-14 is 5700 years. Find the age of a sample at which 13% of the radioactive nuclei originally present have decayed.

[A] 1245 years	[B] 1145 years
[C] 2145 years	[D] 1695 years

2. The half-life of carbon-14 is 5700 years. Find the age of a sample at which 25% of the radioactive nuclei originally present have decayed.

[A] 2366 years	[B] 3366 years
[C] 2916 years	[D] 2466 years

- 3. The function $y = 400(1.03)^x$ models the kindergarten population *y* of an elementary school *x* years after the year 2000. Graph the function on your graphing calculator. Estimate when the kindergarten population will reach 500.
- 4. A forest is losing trees at the rate of 15% per year. After how many years will the forest be reduced to 25% of its current size?
- 5. Find the pH level to the nearest tenth of a liquid if its [H+] is about 2.8×10^{-8}
 - $\left(H + = \left(\frac{1}{10}\right)^{pH}\right).$
- 6. The number of bacteria present in a culture after t minutes is given as $B = 10e^{kt}$. If there are 3527 bacteria present after 3 minutes, find k.

[A]	17.597	[B]	1.943
[C]	1.955	[D]	5.866

NAME:

7. The number of bacteria present in a culture after t minutes is given as $B = 100e^{kt}$. If there are 9790 bacteria present after 7 minutes, find k.

[A] 32.088	[B] 0.764
[C] 0.655	[D] 4.584

- 8. A certain radioactive material decays according to the law $A = A_0 e^{-0.021t}$, where A_0 is the initial amount present and A is the amount present in t years. What is the half-life of this material? Round the answer to two decimal places.
 - [A] 66.01 years [B] 95.24 years
 - [C] 33.01 years
 - [D] impossible to determine without knowing A_0
- 9. A certain radioactive material decays according to the law $A = A_0 e^{-0.0343t}$, where A_0 is the initial amount present and A is the amount present in t years. What is the half-life of this material? Round the answer to two decimal places.
 - [A] 58.31 years [B] 20.21 years
 - [C] 40.42 years
 - [D] impossible to determine without knowing A_0
- 10. Newton's Law of Cooling is given by the function, $T(t) = T_r + (T_i T_r)e^{kt}$, where T(t) is the temperature of a heated substance *t* minutes after it has been removed from a heat (or cooling) source. T_i is the substance's initial temperature, *k* is a constant for that substance, and T_r is room temperature.

The initial temperature of a roast beef is 240° F, room temperature is 70° , and k = -0.041. How long will it take to cool to within one degree of room temperature? Algebra II Practice F.LE.A.4: Exponential Growth and Decay www.jmap.org

- [1] <u>B</u>
- [2] <u>A</u>

[3]	in about $7\frac{1}{2}$ years after the year 2000
	After $8\frac{1}{2}$ years the forest will be 25% of what
[4]	it is now.
[5]	7.6
[6]	<u>C</u>
[7]	<u>C</u>
[8]	<u>C</u>
[9]	<u>B</u>
[10]	$t = 125 \min$