Regents Exam Questions F.IF.B.4: Graphing Quadratic Functions 2 Name: \qquad www.jmap.org

F.IF.B.4: Graphing Quadratic Functions 2

1 A swim team member performs a dive from a 14 -foot-high springboard. The parabola below shows the path of her dive.

Which equation represents the axis of symmetry?

1) $x=3$
2) $y=3$
3) $x=23$
4) $y=23$

2 The graph below represents the parabolic path of a ball kicked by a young child. What are the vertex and the axis of symmetry for the parabola?

1) vertex: $(3,8)$; axis of symmetry: $x=3$
2) vertex: $(3,8)$; axis of symmetry: $y=3$
3) vertex: $(8,3)$; axis of symmetry: $x=3$
4) vertex: $(8,3)$; axis of symmetry: $y=3$

3 The height, y, of a ball tossed into the air can be represented by the equation $y=-x^{2}+10 x+3$, where x is the elapsed time. What is the equation of the axis of symmetry of this parabola?

1) $y=5$
2) $y=-5$
3) $x=5$
4) $x=-5$

4 A ball is thrown straight up at an initial velocity of 54 feet per second. The height of the ball t seconds after it is thrown is given by the formula $\mathrm{h}(t)=54 t-12 t^{2}$. How many seconds after the ball is thrown will it return to the ground?

1) 9.2
2) 6
3) 4.5
4) 4

Regents Exam Questions F.IF.B.4: Graphing Quadratic Functions 2 Name: \qquad www.jmap.org

5 A model rocket is launched from ground level. Its height, h meters above the ground, is a function of time t seconds after launch and is given by the equation $h=-4.9 t^{2}+68.6 t$. What would be the maximum height, to the nearest meter, attained by the model?

1) 243
2) 242
3) 241
4) 240

6 An archer shoots an arrow into the air such that its height at any time, t, is given by the function $\mathrm{h}(t)=-16 t^{2}+k t+3$. If the maximum height of the arrow occurs at time $t=4$, what is the value of k ?

1) 128
2) 64
3) 8
4) 4

7 The height of a swimmer's dive off a 10 -foot platform into a diving pool is modeled by the equation $y=2 x^{2}-12 x+10$, where x represents the number of seconds since the swimmer left the diving board and y represents the number of feet above or below the water's surface. What is the farthest depth below the water's surface that the swimmer will reach?

1) 6 feet
2) 8 feet
3) 10 feet
4) 12 feet

8 The height of an object, $\mathrm{h}(t)$, is determined by the formula $\mathrm{h}(t)=-16 t^{2}+256 t$, where t is time, in seconds. Will the object reach a maximum or a minimum? Explain or show your reasoning.

9 Vanessa throws a tennis ball in the air. The function $\mathrm{h}(t)=-16 t^{2}+45 t+7$ represents the distance, in feet, that the ball is from the ground at any time t. At what time, to the nearest tenth of a second, is the ball at its maximum height?

10 The height, h, in feet, a ball will reach when thrown in the air is a function of time, t, in seconds, given by the equation $\mathrm{h}(t)=-16 t^{2}+30 t+6$. Find, to the nearest tenth, the maximum height, in feet, the ball will reach.

11 When a current, I, flows through a given electrical circuit, the power, W, of the circuit can be determined by the formula $W=120 I-12 I^{2}$. What amount of current, I, supplies the maximum power, W ?

12 The equation $W=120 I-12 I^{2}$ represents the power (W), in watts, of a 120 -volt circuit having a resistance of 12 ohms when a current (I) is flowing through the circuit. What is the maximum power, in watts, that can be delivered in this circuit?

F.IF.B.4: Graphing Quadratic Functions 2

Answer Section

1 ANS: $1 \quad$ REF: 080813ia
2 ANS: $1 \quad$ REF: 081405ia
3 ANS: 3
$x=\frac{-b}{2 a}=\frac{-10}{2(-1)}=5$.
REF: 081018ia
4 ANS: 3

$$
\begin{gathered}
54 t-12 t^{2}=0 \\
6 t(9-2 t)=0 \\
6 t=09-2 t=0 \\
t=0 t=\frac{9}{2}
\end{gathered}
$$

REF: 080112b
5 ANS: 4
$x=\frac{-68.6}{2(-4.9)}=\frac{-(8)}{2(2)}=7$
$y=-4.9(7)^{2}+68.6(7)=240.1$
REF: fall9915b
6 ANS: 1
$t=\frac{-b}{2 a}$
$4=\frac{-(k)}{2(-16)}$
$k=128$
REF: 060101b
7 ANS: 2
$x=\frac{-b}{2 a}=\frac{-(-12)}{2(2)}=3$
$y=2(3)^{2}-12(3)+10=-8$
REF: 010907b
8 ANS:
Maximum, because $a<0$ the parabola representing the relationship between the object's height and time is cupped downward and therefore has a maximum.

REF: 010322b

9 ANS:
1.4. $t=\frac{-b}{2 a}=\frac{-(45)}{2(-16)}=\frac{45}{32} \approx 1.4$

REF: 060321b
10 ANS:

$$
t=\frac{-b}{2 a}=\frac{-(30)}{2(-16)}=\frac{15}{16}
$$

20.1.

$$
h=-16\left(\frac{15}{16}\right)^{2}+30\left(\frac{15}{16}\right)+6=\frac{321}{16} \approx 20.1
$$

REF: 080321b
11 ANS:
5. $I=\frac{-b}{2 a}=\frac{-(120)}{2(-12)}=5$

REF: 010424b
12 ANS:
300. $I=\frac{-b}{2 a}=\frac{-(120)}{2(-12)}=5$

$$
W=120(5)-12(5)^{2}=300
$$

REF: 060225b

