Calculus Practice: Using Definite Integrals to Calculate Volume 9b

For each problem, find the volume of the specified solid.

1) The base of a solid is the region enclosed by the ellipse $\frac{x^{2}}{16}+\frac{y^{2}}{36}=1$. Cross-sections perpendicular to the x-axis are semicircles.
2) The base of a solid is the region enclosed by the circle $x^{2}+y^{2}=9$. Cross-sections perpendicular to the x-axis are rectangles with heights half that of the side in the $x y$-plane.
3) The base of a solid is the region enclosed by the ellipse $\frac{x^{2}}{9}+\frac{y^{2}}{4}=1$. Cross-sections perpendicular to the x-axis are rectangles with heights half that of the side in the $x y$-plane.
4) The base of a solid is the region enclosed by the circle $x^{2}+y^{2}=36$. Cross-sections perpendicular to the x-axis are semicircles.
5) The base of a solid is the region enclosed by the ellipse $\frac{x^{2}}{4}+\frac{y^{2}}{9}=1$. Cross-sections perpendicular to the x-axis are squares.
6) The base of a solid is the region enclosed by the semicircle $y=\sqrt{36-x^{2}}$ and the x-axis. Cross-sections perpendicular to the x-axis are semicircles.
7) The base of a solid is the region enclosed by the semicircle $y=\sqrt{9-x^{2}}$ and the x-axis. Cross-sections perpendicular to the x-axis are semicircles.
8) The base of a solid is the region enclosed by the semicircle $y=\sqrt{36-x^{2}}$ and the x-axis. Cross-sections perpendicular to the x-axis are rectangles with heights twice that of the side in the $x y$-plane.
9) The base of a solid is the region enclosed by the ellipse $\frac{x^{2}}{49}+\frac{y^{2}}{36}=1$. Cross-sections perpendicular to the x-axis are squares.
10) The base of a solid is the region enclosed by the circle $x^{2}+y^{2}=16$. Cross-sections perpendicular to the x-axis are squares.
11) The base of a solid is the region enclosed by the ellipse $\frac{x^{2}}{36}+\frac{y^{2}}{49}=1$. Cross-sections perpendicular to the x-axis are rectangles with heights twice that of the side in the $x y$-plane.
12) The base of a solid is the region enclosed by the ellipse $\frac{x^{2}}{36}+\frac{y^{2}}{9}=1$. Cross-sections perpendicular to the x-axis are squares.

Calculus Practice: Using Definite Integrals to Calculate Volume 9b

For each problem, find the volume of the specified solid.

1) The base of a solid is the region enclosed by the ellipse $\frac{x^{2}}{16}+\frac{y^{2}}{36}=1$. Cross-sections perpendicular to the x-axis are semicircles.

$$
\begin{aligned}
& \frac{\pi}{8} \int_{-4}^{4}\left(\sqrt{36-\frac{36 x^{2}}{16}}+\sqrt{36-\frac{36 x^{2}}{16}}\right)^{2} d x \\
& =96 \pi \approx 301.593
\end{aligned}
$$

2) The base of a solid is the region enclosed by the circle $x^{2}+y^{2}=9$. Cross-sections perpendicular to the x-axis are rectangles with heights half that of the side in the $x y$-plane.

$$
\begin{aligned}
& \frac{1}{2} \int_{-3}^{3}\left(\sqrt{9-x^{2}}+\sqrt{9-x^{2}}\right)^{2} d x \\
& =72
\end{aligned}
$$

3) The base of a solid is the region enclosed by the ellipse $\frac{x^{2}}{9}+\frac{y^{2}}{4}=1$. Cross-sections perpendicular to the x-axis are rectangles with heights half that of the side in the $x y$-plane.

$$
\begin{aligned}
& \frac{1}{2} \int_{-3}^{3}\left(\sqrt{4-\frac{4 x^{2}}{9}}+\sqrt{4-\frac{4 x^{2}}{9}}\right)^{2} d x \\
& =32
\end{aligned}
$$

4) The base of a solid is the region enclosed by the circle $x^{2}+y^{2}=36$. Cross-sections perpendicular to the x-axis are semicircles.

$$
\begin{aligned}
& \frac{\pi}{8} \int_{-6}^{6}\left(\sqrt{36-x^{2}}+\sqrt{36-x^{2}}\right)^{2} d x \\
& =144 \pi \approx 452.389
\end{aligned}
$$

5) The base of a solid is the region enclosed by the ellipse $\frac{x^{2}}{4}+\frac{y^{2}}{9}=1$. Cross-sections perpendicular to the x-axis are squares.

$$
\begin{aligned}
& \int_{-2}^{2}\left(\sqrt{9-\frac{9 x^{2}}{4}}+\sqrt{9-\frac{9 x^{2}}{4}}\right)^{2} d x \\
& =96
\end{aligned}
$$

6) The base of a solid is the region enclosed by the semicircle $y=\sqrt{36-x^{2}}$ and the x-axis. Cross-sections perpendicular to the x-axis are semicircles.

$$
\begin{aligned}
& \frac{\pi}{8} \int_{-6}^{6}\left(\sqrt{36-x^{2}}\right)^{2} d x \\
& =36 \pi \approx 113.097
\end{aligned}
$$

7) The base of a solid is the region enclosed by the semicircle $y=\sqrt{9-x^{2}}$ and the x-axis. Cross-sections perpendicular to the x-axis are semicircles.

$$
\begin{aligned}
& \frac{\pi}{8} \int_{-3}^{3}\left(\sqrt{9-x^{2}}\right)^{2} d x \\
& =\frac{9 \pi}{2} \approx 14.137
\end{aligned}
$$

8) The base of a solid is the region enclosed by the semicircle $y=\sqrt{36-x^{2}}$ and the x-axis. Cross-sections perpendicular to the x-axis are rectangles with heights twice that of the side in the $x y$-plane.

$$
\begin{aligned}
& 2 \int_{-6}^{6}\left(\sqrt{36-x^{2}}\right)^{2} d x \\
& =576
\end{aligned}
$$

9) The base of a solid is the region enclosed by the ellipse $\frac{x^{2}}{49}+\frac{y^{2}}{36}=1$. Cross-sections perpendicular to the x-axis are squares.

$$
\begin{aligned}
& \int_{-7}^{7}\left(\sqrt{36-\frac{36 x^{2}}{49}}+\sqrt{36-\frac{36 x^{2}}{49}}\right)^{2} d x \\
& =1344
\end{aligned}
$$

10) The base of a solid is the region enclosed by the circle $x^{2}+y^{2}=16$. Cross-sections perpendicular to the x-axis are squares.

$$
\begin{aligned}
& \int_{-4}^{4}\left(\sqrt{16-x^{2}}+\sqrt{16-x^{2}}\right)^{2} d x \\
& =\frac{1024}{3} \approx 341.333
\end{aligned}
$$

11) The base of a solid is the region enclosed by the ellipse $\frac{x^{2}}{36}+\frac{y^{2}}{49}=1$. Cross-sections perpendicular to the x-axis are rectangles with heights twice that of the side in the $x y$-plane.
$2 \int_{-6}^{6}\left(\sqrt{49-\frac{49 x^{2}}{36}}+\sqrt{49-\frac{49 x^{2}}{36}}\right)^{2} d x$
$=3136$
12) The base of a solid is the region enclosed by the ellipse $\frac{x^{2}}{36}+\frac{y^{2}}{9}=1$. Cross-sections perpendicular to the x-axis are squares.

$$
\begin{aligned}
& \int_{-6}^{6}\left(\sqrt{9-\frac{9 x^{2}}{36}}+\sqrt{9-\frac{9 x^{2}}{36}}\right)^{2} d x \\
& =288
\end{aligned}
$$

