\qquad

Calculus Practice: Using Definite Integrals to Calculate Volume 9a

For each problem, find the volume of the specified solid.

1) The base of a solid is the region enclosed by $y=-\frac{x^{2}}{9}+4$ and $y=0$. Cross-sections perpendicular to the x-axis are rectangles with heights half that of the side in the $x y$-plane.
A) $\frac{4000}{3} \approx 1333.333$
B) $\frac{1372}{3} \approx 457.333$
C) $\frac{256}{5}=51.2$
D) $\frac{64}{15} \approx 4.267$
2) The base of a solid is the region enclosed by the ellipse $\frac{x^{2}}{49}+\frac{y^{2}}{9}=1$. Cross-sections perpendicular to the x-axis are rectangles with heights twice that of the side in the $x y$-plane.
A) 72
B) 672
C) $\frac{128 \pi}{3} \approx 134.041$
D) 288
3) The base of a solid is the region enclosed by the semicircle $y=\sqrt{16-x^{2}}$ and the x-axis. Cross-sections perpendicular to the x-axis are squares.
A) $\frac{16}{15} \approx 1.067$
B) $\frac{1024}{15} \approx 68.267$
C) $\frac{128 \pi}{3} \approx 134.041$
D) $\frac{256}{3} \approx 85.333$
4) The base of a solid is the region enclosed by the ellipse $\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$. Cross-sections perpendicular to the x-axis are squares.
A) $\frac{5488}{3} \approx 1829.333$
B) 192
C) $\frac{8}{15} \approx 0.533$
D) 72
5) The base of a solid is the region enclosed by the circle $x^{2}+y^{2}=49$. Cross-sections perpendicular to the x-axis are rectangles with heights half that of the side in the $x y$-plane.
A) 288
B) $\frac{2744}{3} \approx 914.667$
C) $\frac{1024}{3} \approx 341.333$
D) 784
6) The base of a solid is the region enclosed by the circle $x^{2}+y^{2}=16$. Cross-sections perpendicular to the x-axis are semicircles.
A) $\frac{32 \pi}{3} \approx 33.51$
B) $\frac{128 \pi}{3} \approx 134.041$
C) $\frac{2 \pi}{15} \approx 0.419$
D) 18
7) The base of a solid is the region enclosed by the circle $x^{2}+y^{2}=49$. Cross-sections perpendicular to the x-axis are squares.
A) $\frac{250 \pi}{3} \approx 261.799$
B) $\frac{128}{3} \approx 42.667$
C) $\frac{5488}{3} \approx 1829.333$
D) $\frac{32}{15} \approx 2.133$
8) The base of a solid is the region enclosed by the ellipse $\frac{x^{2}}{36}+\frac{y^{2}}{4}=1$. Cross-sections perpendicular to the x-axis are rectangles with heights half that of the side in the $x y$-plane.
A) 64
B) $\frac{686}{3} \approx 228.667$
C) $\frac{343 \pi}{6} \approx 179.594$
D) $\frac{16}{15} \approx 1.067$
9) The base of a solid is the region enclosed by $y=-x^{2}+1$ and $y=0$. Cross-sections perpendicular to the x-axis are squares.
A) $\frac{500}{3} \approx 166.667$
B) $\frac{16}{15} \approx 1.067$
C) $\frac{9 \pi}{2} \approx 14.137$
D) $\frac{1000}{3} \approx 333.333$
10) The base of a solid is the region enclosed by the ellipse $\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$. Cross-sections perpendicular to the x-axis are rectangles with heights half that of the side in the $x y$-plane.
A) 1152
B) 96
C) $\frac{1000}{3} \approx 333.333$
D) $72 \pi \approx 226.195$
11) The base of a solid is the region enclosed by the circle $x^{2}+y^{2}=49$. Cross-sections perpendicular to the x-axis are semicircles.
A) $\frac{32}{15} \approx 2.133$
B) 1152
C) $\frac{2048}{15} \approx 136.533$
D) $\frac{686 \pi}{3} \approx 718.378$
12) The base of a solid is the region enclosed by $y=4$ and $y=\frac{x^{2}}{4}$. Cross-sections perpendicular to the x-axis are rectangles with heights twice that of the side in the $x y$-plane.
A) 72
B) 576
C) $\frac{1024}{3} \approx 341.333$
D) $\frac{2048}{15} \approx 136.533$

Calculus Practice: Using Definite Integrals to Calculate Volume 9a

For each problem, find the volume of the specified solid.

1) The base of a solid is the region enclosed by $y=-\frac{x^{2}}{9}+4$ and $y=0$. Cross-sections perpendicular to the x-axis are rectangles with heights half that of the side in the $x y$-plane.
A) $\frac{4000}{3} \approx 1333.333$
B) $\frac{1372}{3} \approx 457.333$
*C) $\frac{256}{5}=51.2$
D) $\frac{64}{15} \approx 4.267$
2) The base of a solid is the region enclosed by the ellipse $\frac{x^{2}}{49}+\frac{y^{2}}{9}=1$. Cross-sections perpendicular to the x-axis are rectangles with heights twice that of the side in the $x y$-plane.
A) 72
*B) 672
C) $\frac{128 \pi}{3} \approx 134.041$
D) 288
3) The base of a solid is the region enclosed by the semicircle $y=\sqrt{16-x^{2}}$ and the x-axis. Cross-sections perpendicular to the x-axis are squares.
A) $\frac{16}{15} \approx 1.067$
B) $\frac{1024}{15} \approx 68.267$
C) $\frac{128 \pi}{3} \approx 134.041$
*D) $\frac{256}{3} \approx 85.333$
4) The base of a solid is the region enclosed by the ellipse $\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$. Cross-sections perpendicular to the x-axis are squares.
A) $\frac{5488}{3} \approx 1829.333$
*B) 192
C) $\frac{8}{15} \approx 0.533$
D) 72
5) The base of a solid is the region enclosed by the circle $x^{2}+y^{2}=49$. Cross-sections perpendicular to the x-axis are rectangles with heights half that of the side in the $x y$-plane.
A) 288
*B) $\frac{2744}{3} \approx 914.667$
C) $\frac{1024}{3} \approx 341.333$
D) 784
6) The base of a solid is the region enclosed by the circle $x^{2}+y^{2}=16$. Cross-sections perpendicular to the x-axis are semicircles.
A) $\frac{32 \pi}{3} \approx 33.51$
*B) $\frac{128 \pi}{3} \approx 134.041$
C) $\frac{2 \pi}{15} \approx 0.419$
D) 18
7) The base of a solid is the region enclosed by the circle $x^{2}+y^{2}=49$. Cross-sections perpendicular to the x-axis are squares.
A) $\frac{250 \pi}{3} \approx 261.799$
B) $\frac{128}{3} \approx 42.667$
*C) $\frac{5488}{3} \approx 1829.333$
D) $\frac{32}{15} \approx 2.133$
8) The base of a solid is the region enclosed by the ellipse $\frac{x^{2}}{36}+\frac{y^{2}}{4}=1$. Cross-sections perpendicular to the x-axis are rectangles with heights half that of the side in the $x y$-plane.
*A) 64
B) $\frac{686}{3} \approx 228.667$
C) $\frac{343 \pi}{6} \approx 179.594$
D) $\frac{16}{15} \approx 1.067$
9) The base of a solid is the region enclosed by $y=-x^{2}+1$ and $y=0$. Cross-sections perpendicular to the x-axis are squares.
A) $\frac{500}{3} \approx 166.667$
*B) $\frac{16}{15} \approx 1.067$
C) $\frac{9 \pi}{2} \approx 14.137$
D) $\frac{1000}{3} \approx 333.333$
10) The base of a solid is the region enclosed by the ellipse $\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$. Cross-sections perpendicular to the x-axis are rectangles with heights half that of the side in the $x y$-plane.
A) 1152
*B) 96
C) $\frac{1000}{3} \approx 333.333$
D) $72 \pi \approx 226.195$
11) The base of a solid is the region enclosed by the circle $x^{2}+y^{2}=49$. Cross-sections perpendicular to the x-axis are semicircles.
A) $\frac{32}{15} \approx 2.133$
B) 1152
C) $\frac{2048}{15} \approx 136.533$
*D) $\frac{686 \pi}{3} \approx 718.378$
12) The base of a solid is the region enclosed by $y=4$ and $y=\frac{x^{2}}{4}$. Cross-sections perpendicular to the x-axis are rectangles with heights twice that of the side in the $x y$-plane.
A) 72
B) 576
C) $\frac{1024}{3} \approx 341.333$
*D) $\frac{2048}{15} \approx 136.533$
