Calculus Practice: Using Definite Integrals to Calculate Volume 9a

For each problem, find the volume of the specified solid.

1) The base of a solid is the region enclosed by $y = -\frac{x^2}{9} + 4$ and y = 0. Cross-sections

perpendicular to the x-axis are rectangles with heights half that of the side in the xy-plane.

A)
$$\frac{4000}{3} \approx 1333.333$$
 B) $\frac{1372}{3} \approx 457.333$ C) $\frac{256}{5} = 51.2$ D) $\frac{64}{15} \approx 4.267$

- 2) The base of a solid is the region enclosed by the ellipse $\frac{x^2}{49} + \frac{y^2}{9} = 1$. Cross-sections perpendicular to the *x*-axis are rectangles with heights twice that of the side in the *xy*-plane.
 - A) 72 B) 672 C) $\frac{128\pi}{3} \approx 134.041$ D) 288
- 3) The base of a solid is the region enclosed by the semicircle $y = \sqrt{16 x^2}$ and the *x*-axis. Cross-sections perpendicular to the *x*-axis are squares.
 - A) $\frac{16}{15} \approx 1.067$ B) $\frac{1024}{15} \approx 68.267$ C) $\frac{128\pi}{3} \approx 134.041$ D) $\frac{256}{3} \approx 85.333$
- 4) The base of a solid is the region enclosed by the ellipse $\frac{x^2}{16} + \frac{y^2}{9} = 1$. Cross-sections perpendicular to the *x*-axis are squares.

A)
$$\frac{5488}{3} \approx 1829.333$$
 B) 192 C) $\frac{8}{15} \approx 0.533$ D) 72

5) The base of a solid is the region enclosed by the circle $x^2 + y^2 = 49$. Cross-sections perpendicular to the *x*-axis are rectangles with heights half that of the side in the *xy*-plane.

A) 288 B)
$$\frac{2744}{3} \approx 914.667$$
 C) $\frac{1024}{3} \approx 341.333$ D) 784

6) The base of a solid is the region enclosed by the circle $x^2 + y^2 = 16$. Cross-sections perpendicular to the *x*-axis are semicircles.

A)
$$\frac{32\pi}{3} \approx 33.51$$
 B) $\frac{128\pi}{3} \approx 134.041$ C) $\frac{2\pi}{15} \approx 0.419$ D) 18

-1-2022 Kuta Software LLC. All rights reserved. Made with Infinite Calculus 7) The base of a solid is the region enclosed by the circle $x^2 + y^2 = 49$. Cross-sections perpendicular to the *x*-axis are squares.

A)
$$\frac{250\pi}{3} \approx 261.799$$

B) $\frac{128}{3} \approx 42.667$
C) $\frac{5488}{3} \approx 1829.333$
D) $\frac{32}{15} \approx 2.133$

8) The base of a solid is the region enclosed by the ellipse $\frac{x^2}{36} + \frac{y^2}{4} = 1$. Cross-sections perpendicular to the *x*-axis are rectangles with heights half that of the side in the *xy*-plane.

A) 64 B)
$$\frac{686}{3} \approx 228.667$$
 C) $\frac{343\pi}{6} \approx 179.594$ D) $\frac{16}{15} \approx 1.067$

- 9) The base of a solid is the region enclosed by $y = -x^2 + 1$ and y = 0. Cross-sections perpendicular to the *x*-axis are squares.
 - A) $\frac{500}{3} \approx 166.667$ B) $\frac{16}{15} \approx 1.067$ C) $\frac{9\pi}{2} \approx 14.137$ D) $\frac{1000}{3} \approx 333.333$
- 10) The base of a solid is the region enclosed by the ellipse $\frac{x^2}{16} + \frac{y^2}{9} = 1$. Cross-sections perpendicular to the *x*-axis are rectangles with heights half that of the side in the *xy*-plane.
 - A) 1152 B) 96 C) $\frac{1000}{3} \approx 333.333$ D) $72\pi \approx 226.195$
- 11) The base of a solid is the region enclosed by the circle $x^2 + y^2 = 49$. Cross-sections perpendicular to the *x*-axis are semicircles.
 - A) $\frac{32}{15} \approx 2.133$ B) 1152 C) $\frac{2048}{15} \approx 136.533$ D) $\frac{686\pi}{3} \approx 718.378$
- 12) The base of a solid is the region enclosed by y = 4 and $y = \frac{x^2}{4}$. Cross-sections perpendicular to the *x*-axis are rectangles with heights twice that of the side in the *xy*-plane.
 - A) 72 B) 576 C) $\frac{1024}{3} \approx 341.333$ D) $\frac{2048}{15} \approx 136.533$

-2-© 2022 Kuta Software LLC. All rights reserved. Made with Infinite Calculus

Calculus Practice: Using Definite Integrals to Calculate Volume 9a

For each problem, find the volume of the specified solid.

1) The base of a solid is the region enclosed by $y = -\frac{x^2}{9} + 4$ and y = 0. Cross-sections

perpendicular to the x-axis are rectangles with heights half that of the side in the xy-plane.

A)
$$\frac{4000}{3} \approx 1333.333$$
 B) $\frac{1372}{3} \approx 457.333$ *C) $\frac{256}{5} = 51.2$ D) $\frac{64}{15} \approx 4.267$

- 2) The base of a solid is the region enclosed by the ellipse $\frac{x^2}{49} + \frac{y^2}{9} = 1$. Cross-sections perpendicular to the *x*-axis are rectangles with heights twice that of the side in the *xy*-plane.
 - A) 72 *B) 672 C) $\frac{128\pi}{3} \approx 134.041$ D) 288
- 3) The base of a solid is the region enclosed by the semicircle $y = \sqrt{16 x^2}$ and the *x*-axis. Cross-sections perpendicular to the *x*-axis are squares.
 - A) $\frac{16}{15} \approx 1.067$ B) $\frac{1024}{15} \approx 68.267$ C) $\frac{128\pi}{3} \approx 134.041$ *D) $\frac{256}{3} \approx 85.333$
- 4) The base of a solid is the region enclosed by the ellipse $\frac{x^2}{16} + \frac{y^2}{9} = 1$. Cross-sections perpendicular to the *x*-axis are squares.

A)
$$\frac{5488}{3} \approx 1829.333$$
 *****B) 192 C) $\frac{8}{15} \approx 0.533$ D) 72

5) The base of a solid is the region enclosed by the circle $x^2 + y^2 = 49$. Cross-sections perpendicular to the *x*-axis are rectangles with heights half that of the side in the *xy*-plane.

A) 288 *****B)
$$\frac{2744}{3} \approx 914.667$$
 C) $\frac{1024}{3} \approx 341.333$ D) 784

6) The base of a solid is the region enclosed by the circle $x^2 + y^2 = 16$. Cross-sections perpendicular to the *x*-axis are semicircles.

A)
$$\frac{32\pi}{3} \approx 33.51$$
 *B) $\frac{128\pi}{3} \approx 134.041$ C) $\frac{2\pi}{15} \approx 0.419$ D) 18

-1-© 2022 Kuta Software LLC. All rights reserved. Made with Infinite Calculus. 7) The base of a solid is the region enclosed by the circle $x^2 + y^2 = 49$. Cross-sections perpendicular to the *x*-axis are squares.

A)
$$\frac{250\pi}{3} \approx 261.799$$

*C) $\frac{5488}{3} \approx 1829.333$
B) $\frac{128}{3} \approx 42.667$
D) $\frac{32}{15} \approx 2.133$

8) The base of a solid is the region enclosed by the ellipse $\frac{x^2}{36} + \frac{y^2}{4} = 1$. Cross-sections perpendicular to the *x*-axis are rectangles with heights half that of the side in the *xy*-plane.

*A) 64 B)
$$\frac{686}{3} \approx 228.667$$
 C) $\frac{343\pi}{6} \approx 179.594$ D) $\frac{16}{15} \approx 1.067$

- 9) The base of a solid is the region enclosed by $y = -x^2 + 1$ and y = 0. Cross-sections perpendicular to the *x*-axis are squares.
 - A) $\frac{500}{3} \approx 166.667$ ***B**) $\frac{16}{15} \approx 1.067$ C) $\frac{9\pi}{2} \approx 14.137$ D) $\frac{1000}{3} \approx 333.333$
- 10) The base of a solid is the region enclosed by the ellipse $\frac{x^2}{16} + \frac{y^2}{9} = 1$. Cross-sections perpendicular to the *x*-axis are rectangles with heights half that of the side in the *xy*-plane.
 - A) 1152 *****B) 96 C) $\frac{1000}{3} \approx 333.333$ D) $72\pi \approx 226.195$
- 11) The base of a solid is the region enclosed by the circle $x^2 + y^2 = 49$. Cross-sections perpendicular to the *x*-axis are semicircles.
 - A) $\frac{32}{15} \approx 2.133$ B) 1152 C) $\frac{2048}{15} \approx 136.533$ *D) $\frac{686\pi}{3} \approx 718.378$
- 12) The base of a solid is the region enclosed by y = 4 and $y = \frac{x^2}{4}$. Cross-sections perpendicular to the *x*-axis are rectangles with heights twice that of the side in the *xy*-plane.
 - A) 72 B) 576 C) $\frac{1024}{3} \approx 341.333$ *D) $\frac{2048}{15} \approx 136.533$

© 2022 Kuta Software LLC. All rights reserved. Made with Infinite Calculus.