Calculus Practice: Using Definite Integrals to Calculate Volume 11b

For each problem, find the volume of the specified solid.

1) The base of a solid is the region enclosed by the circle $x^{2}+y^{2}=36$. Cross-sections perpendicular to the y-axis are squares.
2) The base of a solid is the region enclosed by $y=-\frac{x^{2}}{9}+1$ and $y=0$. Cross-sections perpendicular to the y-axis are semicircles.
3) The base of a solid is the region enclosed by the circle $x^{2}+y^{2}=16$. Cross-sections perpendicular to the y-axis are semicircles.
4) The base of a solid is the region enclosed by the semicircle $y=\sqrt{49-x^{2}}$ and the x-axis. Cross-sections perpendicular to the y-axis are equilateral triangles.
5) The base of a solid is the region enclosed by the circle $x^{2}+y^{2}=25$. Cross-sections perpendicular to the y-axis are isosceles right triangles with one leg in the $x y$-plane.
6) The base of a solid is the region enclosed by the circle $x^{2}+y^{2}=49$. Cross-sections perpendicular to the y-axis are semicircles.
7) The base of a solid is the region enclosed by $y=-\frac{x^{2}}{4}+1$ and $y=0$. Cross-sections perpendicular to the y-axis are rectangles with heights twice that of the side in the $x y$-plane.
8) The base of a solid is the region enclosed by $y=-\frac{x^{2}}{4}+1$ and $y=0$. Cross-sections perpendicular to the y-axis are isosceles right triangles with the hypotenuse in the base.
9) The base of a solid is the region enclosed by $y=4$ and $y=\frac{x^{2}}{4}$. Cross-sections perpendicular to the y-axis are isosceles right triangles with the hypotenuse in the base.
10) The base of a solid is the region enclosed by $y=4$ and $y=x^{2}$. Cross-sections perpendicular to the y-axis are isosceles right triangles with one leg in the $x y$-plane.
11) The base of a solid is the region enclosed by the ellipse $\frac{x^{2}}{16}+\frac{y^{2}}{36}=1$. Cross-sections perpendicular to the y-axis are rectangles with heights twice that of the side in the $x y$-plane.
12) The base of a solid is the region enclosed by the ellipse $\frac{x^{2}}{9}+\frac{y^{2}}{4}=1$. Cross-sections perpendicular to the y-axis are isosceles right triangles with one leg in the $x y$-plane.
\qquad

Calculus Practice: Using Definite Integrals to Calculate Volume 11b

For each problem, find the volume of the specified solid.

1) The base of a solid is the region enclosed by the circle $x^{2}+y^{2}=36$. Cross-sections perpendicular to the y-axis are squares.

$$
\begin{aligned}
& \int_{-6}^{6}\left(\sqrt{36-y^{2}}+\sqrt{36-y^{2}}\right)^{2} d y \\
& =1152
\end{aligned}
$$

2) The base of a solid is the region enclosed by $y=-\frac{x^{2}}{9}+1$ and $y=0$. Cross-sections perpendicular to the y-axis are semicircles.

$$
\begin{aligned}
& \frac{\pi}{8} \int_{0}^{1}(\sqrt{9-9 y}+\sqrt{9-9 y})^{2} d y \\
& =\frac{9 \pi}{4} \approx 7.069
\end{aligned}
$$

3) The base of a solid is the region enclosed by the circle $x^{2}+y^{2}=16$. Cross-sections perpendicular to the y-axis are semicircles.

$$
\begin{aligned}
& \frac{\pi}{8} \int_{-4}^{4}\left(\sqrt{16-y^{2}}+\sqrt{16-y^{2}}\right)^{2} d y \\
& =\frac{128 \pi}{3} \approx 134.041
\end{aligned}
$$

4) The base of a solid is the region enclosed by the semicircle $y=\sqrt{49-x^{2}}$ and the x-axis. Cross-sections perpendicular to the y-axis are equilateral triangles.

$$
\begin{aligned}
& \frac{\sqrt{3}}{4} \int_{0}^{7}\left(\sqrt{49-y^{2}}+\sqrt{49-y^{2}}\right)^{2} d y \\
& =\frac{686 \sqrt{3}}{3} \approx 396.062
\end{aligned}
$$

5) The base of a solid is the region enclosed by the circle $x^{2}+y^{2}=25$. Cross-sections perpendicular to the y-axis are isosceles right triangles with one leg in the $x y$-plane.

$$
\begin{aligned}
& \frac{1}{2} \int_{-5}^{5}\left(\sqrt{25-y^{2}}+\sqrt{25-y^{2}}\right)^{2} d y \\
& =\frac{1000}{3} \approx 333.333
\end{aligned}
$$

6) The base of a solid is the region enclosed by the circle $x^{2}+y^{2}=49$. Cross-sections perpendicular to the y-axis are semicircles.

$$
\begin{aligned}
& \frac{\pi}{8} \int_{-7}^{7}\left(\sqrt{49-y^{2}}+\sqrt{49-y^{2}}\right)^{2} d y \\
& =\frac{686 \pi}{3} \approx 718.378
\end{aligned}
$$

7) The base of a solid is the region enclosed by $y=-\frac{x^{2}}{4}+1$ and $y=0$. Cross-sections perpendicular to the y-axis are rectangles with heights twice that of the side in the $x y$-plane.

$$
\begin{aligned}
& 2 \int_{0}^{1}(\sqrt{4-4 y}+\sqrt{4-4 y})^{2} d y \\
& =16
\end{aligned}
$$

8) The base of a solid is the region enclosed by $y=-\frac{x^{2}}{4}+1$ and $y=0$. Cross-sections perpendicular to the y-axis are isosceles right triangles with the hypotenuse in the base.

$$
\begin{aligned}
& \frac{1}{4} \int_{0}^{1}(\sqrt{4-4 y}+\sqrt{4-4 y})^{2} d y \\
& =2
\end{aligned}
$$

9) The base of a solid is the region enclosed by $y=4$ and $y=\frac{x^{2}}{4}$. Cross-sections perpendicular to the y-axis are isosceles right triangles with the hypotenuse in the base.

$$
\begin{aligned}
& \frac{1}{4} \int_{0}^{4}(2 \sqrt{y}+2 \sqrt{y})^{2} d y \\
& =32
\end{aligned}
$$

10) The base of a solid is the region enclosed by $y=4$ and $y=x^{2}$. Cross-sections perpendicular to the y-axis are isosceles right triangles with one leg in the $x y$-plane.

$$
\begin{aligned}
& \frac{1}{2} \int_{0}^{4}(\sqrt{y}+\sqrt{y})^{2} d y \\
& =16
\end{aligned}
$$

11) The base of a solid is the region enclosed by the ellipse $\frac{x^{2}}{16}+\frac{y^{2}}{36}=1$. Cross-sections perpendicular to the y-axis are rectangles with heights twice that of the side in the $x y$-plane.
$2 \int_{-6}^{6}\left(\sqrt{16-\frac{16 y^{2}}{36}}+\sqrt{16-\frac{16 y^{2}}{36}}\right)^{2} d y$
$=1024$
12) The base of a solid is the region enclosed by the ellipse $\frac{x^{2}}{9}+\frac{y^{2}}{4}=1$. Cross-sections perpendicular to the y-axis are isosceles right triangles with one leg in the $x y$-plane.

$$
\begin{aligned}
& \frac{1}{2} \int_{-2}^{2}\left(\sqrt{9-\frac{9 y^{2}}{4}}+\sqrt{9-\frac{9 y^{2}}{4}}\right)^{2} d y \\
& =48
\end{aligned}
$$

