www.jmap.org Software LLC. All rights reserved. Calculus Practice: Using Definite Integrals to Calculate Volume 11a

For each problem, find the volume of the specified solid.

- 1) The base of a solid is the region enclosed by y = 1 and $y = \frac{x^2}{4}$. Cross-sections perpendicular to the y-axis are equilateral triangles.

 - A) $2\sqrt{3} \approx 3.464$ B) $\frac{1372}{3} \approx 457.333$ C) 72 D) 16
- 2) The base of a solid is the region enclosed by y = 1 and $y = \frac{x^2}{9}$. Cross-sections perpendicular to the y-axis are equilateral triangles.

- A) 288 B) $\frac{9\sqrt{3}}{2} \approx 7.794$ C) $\frac{1000}{3} \approx 333.333$ D) $\frac{5488}{3} \approx 1829.333$
- 3) The base of a solid is the region enclosed by the ellipse $\frac{x^2}{4} + \frac{y^2}{49} = 1$. Cross-sections perpendicular to the y-axis are semicircles.
 - A) $\frac{1792}{3} \approx 597.333$ B) $\frac{56\pi}{3} \approx 58.643$ C) 144 D) $144\pi \approx 452.389$

- 4) The base of a solid is the region enclosed by y = 4 and $y = \frac{x^2}{4}$. Cross-sections perpendicular to the y-axis are isosceles right triangles with the hypotenuse in the base.

 - A) $\frac{64}{2} \approx 21.333$ B) $\frac{250\sqrt{3}}{3} \approx 144.338$ C) $\frac{5488}{3} \approx 1829.333$
- D) 32
- 5) The base of a solid is the region enclosed by y = 1 and $y = x^2$. Cross-sections perpendicular to the y-axis are semicircles.
 - A) $144\sqrt{3} \approx 249.415$ B) 72 C) $\frac{64\pi}{3} \approx 67.021$ D) $\frac{\pi}{4} \approx 0.785$

- 6) The base of a solid is the region enclosed by the ellipse $\frac{x^2}{40} + \frac{y^2}{16} = 1$. Cross-sections perpendicular to the y-axis are isosceles right triangles with one leg in the xy-plane.

 - A) $\frac{64\sqrt{3}}{3} \approx 36.95$ B) $\frac{4000}{3} \approx 1333.333$

 - C) $96\sqrt{3} \approx 166.277$ D) $\frac{1568}{3} \approx 522.667$

- 7) The base of a solid is the region enclosed by the ellipse $\frac{x^2}{16} + \frac{y^2}{9} = 1$. Cross-sections perpendicular to the y-axis are isosceles right triangles with one leg in the xy-plane.
 - A) $168\pi \approx 527.788$
- B) 128
- C) 36
- D) 8
- 8) The base of a solid is the region enclosed by the ellipse $\frac{x^2}{9} + \frac{y^2}{25} = 1$. Cross-sections perpendicular to the y-axis are equilateral triangles.
 - A) 192

- B) $\frac{1960}{3} \approx 653.333$
- C) $60\sqrt{3} \approx 103.923$ D) $\frac{512}{3} \approx 170.667$
- 9) The base of a solid is the region enclosed by y = 4 and $y = \frac{x^2}{9}$. Cross-sections perpendicular to the y-axis are isosceles right triangles with one leg in the xy-plane.
 - A) $288\sqrt{3} \approx 498.831$ B) $\frac{343\pi}{3} \approx 359.189$ C) $\frac{128}{3} \approx 42.667$

- D) 144
- 10) The base of a solid is the region enclosed by the ellipse $\frac{x^2}{25} + \frac{y^2}{16} = 1$. Cross-sections perpendicular to the y-axis are squares.
 - A) 1
- B) 200
- C) 576 D) $\frac{1600}{3} \approx 533.333$
- 11) The base of a solid is the region enclosed by the ellipse $\frac{x^2}{16} + \frac{y^2}{36} = 1$. Cross-sections perpendicular to the y-axis are equilateral triangles.

- A) $200\sqrt{3} \approx 346.41$ B) $128\sqrt{3} \approx 221.703$ C) $\frac{9\pi}{4} \approx 7.069$ D) $\frac{512}{3} \approx 170.667$
- 12) The base of a solid is the region enclosed by the semicircle $y = \sqrt{16 x^2}$ and the x-axis. Cross-sections perpendicular to the y-axis are semicircles.
- A) $\frac{125\pi}{3} \approx 130.9$ B) 256 C) $\frac{1372}{3} \approx 457.333$ D) $\frac{64\pi}{3} \approx 67.021$

Calculus Practice: Using Definite Integrals to Calculate Volume 11a

For each problem, find the volume of the specified solid.

- 1) The base of a solid is the region enclosed by y = 1 and $y = \frac{x^2}{4}$. Cross-sections perpendicular to the y-axis are equilateral triangles.
- *A) $2\sqrt{3} \approx 3.464$ B) $\frac{1372}{3} \approx 457.333$ C) 72 D) 16
- 2) The base of a solid is the region enclosed by y = 1 and $y = \frac{x^2}{9}$. Cross-sections perpendicular to the y-axis are equilateral triangles.

- A) 288 *B) $\frac{9\sqrt{3}}{2} \approx 7.794$ C) $\frac{1000}{3} \approx 333.333$ D) $\frac{5488}{3} \approx 1829.333$
- 3) The base of a solid is the region enclosed by the ellipse $\frac{x^2}{4} + \frac{y^2}{49} = 1$. Cross-sections perpendicular to the y-axis are semicircles.
 - A) $\frac{1792}{3} \approx 597.333$ *B) $\frac{56\pi}{3} \approx 58.643$ C) 144 D) $144\pi \approx 452.389$

- 4) The base of a solid is the region enclosed by y = 4 and $y = \frac{x^2}{4}$. Cross-sections perpendicular to the y-axis are isosceles right triangles with the hypotenuse in the base.

 - A) $\frac{64}{2} \approx 21.333$ B) $\frac{250\sqrt{3}}{2} \approx 144.338$ C) $\frac{5488}{3} \approx 1829.333$
- *D) 32
- 5) The base of a solid is the region enclosed by y = 1 and $y = x^2$. Cross-sections perpendicular to the y-axis are semicircles.
 - A) $144\sqrt{3} \approx 249.415$ B) 72 C) $\frac{64\pi}{3} \approx 67.021$ *D) $\frac{\pi}{4} \approx 0.785$

- 6) The base of a solid is the region enclosed by the ellipse $\frac{x^2}{40} + \frac{y^2}{16} = 1$. Cross-sections perpendicular to the y-axis are isosceles right triangles with one leg in the xy-plane.

 - A) $\frac{64\sqrt{3}}{2} \approx 36.95$ B) $\frac{4000}{3} \approx 1333.333$
 - C) $96\sqrt{3} \approx 166.277$ *D) $\frac{1568}{3} \approx 522.667$

- 7) The base of a solid is the region enclosed by the ellipse $\frac{x^2}{16} + \frac{y^2}{9} = 1$. Cross-sections perpendicular to the y-axis are isosceles right triangles with one leg in the xy-plane.
 - A) $168\pi \approx 527.788$
- *B) 128
- C) 36
- D) 8
- 8) The base of a solid is the region enclosed by the ellipse $\frac{x^2}{9} + \frac{y^2}{25} = 1$. Cross-sections perpendicular to the y-axis are equilateral triangles.
 - A) 192

- B) $\frac{1960}{3} \approx 653.333$
- *C) $60\sqrt{3} \approx 103.923$ D) $\frac{512}{3} \approx 170.667$
- 9) The base of a solid is the region enclosed by y = 4 and $y = \frac{x^2}{9}$. Cross-sections perpendicular to the y-axis are isosceles right triangles with one leg in the xy-plane.
 - A) $288\sqrt{3} \approx 498.831$ B) $\frac{343\pi}{3} \approx 359.189$ C) $\frac{128}{3} \approx 42.667$

- *D) 144
- 10) The base of a solid is the region enclosed by the ellipse $\frac{x^2}{25} + \frac{y^2}{16} = 1$. Cross-sections perpendicular to the y-axis are squares.
 - A) 1
- B) 200
- C) 576 *D) $\frac{1600}{3} \approx 533.333$
- 11) The base of a solid is the region enclosed by the ellipse $\frac{x^2}{16} + \frac{y^2}{36} = 1$. Cross-sections perpendicular to the y-axis are equilateral triangles.

 - A) $200\sqrt{3} \approx 346.41$ *B) $128\sqrt{3} \approx 221.703$

 - C) $\frac{9\pi}{4} \approx 7.069$ D) $\frac{512}{3} \approx 170.667$
- 12) The base of a solid is the region enclosed by the semicircle $y = \sqrt{16 x^2}$ and the x-axis. Cross-sections perpendicular to the y-axis are semicircles.
- A) $\frac{125\pi}{3} \approx 130.9$ B) 256 C) $\frac{1372}{3} \approx 457.333$ *D) $\frac{64\pi}{3} \approx 67.021$