Calculus Practice: Using Definite Integrals to Calculate Volume 10b

For each problem, find the volume of the specified solid.

1) The base of a solid is the region enclosed by the ellipse $\frac{x^{2}}{16}+\frac{y^{2}}{36}=1$. Cross-sections perpendicular to the x-axis are equilateral triangles.
2) The base of a solid is the region enclosed by the ellipse $\frac{x^{2}}{9}+\frac{y^{2}}{4}=1$. Cross-sections perpendicular to the x-axis are isosceles right triangles with one leg in the $x y$-plane.
3) The base of a solid is the region enclosed by the ellipse $\frac{x^{2}}{4}+\frac{y^{2}}{9}=1$. Cross-sections perpendicular to the x-axis are isosceles right triangles with the hypotenuse in the base.
4) The base of a solid is the region enclosed by the circle $x^{2}+y^{2}=36$. Cross-sections perpendicular to the x-axis are isosceles right triangles with one leg in the $x y$-plane.
5) The base of a solid is the region enclosed by the semicircle $y=\sqrt{36-x^{2}}$ and the x-axis. Cross-sections perpendicular to the x-axis are isosceles right triangles with one leg in the $x y$ -plane.
6) The base of a solid is the region enclosed by the ellipse $\frac{x^{2}}{49}+\frac{y^{2}}{9}=1$. Cross-sections perpendicular to the x-axis are isosceles right triangles with one leg in the $x y$-plane.
7) The base of a solid is the region enclosed by the semicircle $y=\sqrt{25-x^{2}}$ and the x-axis. Cross-sections perpendicular to the x-axis are isosceles right triangles with the hypotenuse in the base.
8) The base of a solid is the region enclosed by the semicircle $y=\sqrt{49-x^{2}}$ and the x-axis. Cross-sections perpendicular to the x-axis are isosceles right triangles with one leg in the $x y$ -plane.
9) The base of a solid is the region enclosed by the circle $x^{2}+y^{2}=49$. Cross-sections perpendicular to the x-axis are isosceles right triangles with the hypotenuse in the base.
10) The base of a solid is the region enclosed by $y=-x^{2}+4$ and $y=0$. Cross-sections perpendicular to the x-axis are equilateral triangles.
11) The base of a solid is the region enclosed by the ellipse $\frac{x^{2}}{16}+\frac{y^{2}}{49}=1$. Cross-sections perpendicular to the x-axis are isosceles right triangles with the hypotenuse in the base.
12) The base of a solid is the region enclosed by the circle $x^{2}+y^{2}=9$. Cross-sections perpendicular to the x-axis are isosceles right triangles with the hypotenuse in the base.

Calculus Practice: Using Definite Integrals to Calculate Volume 10b

For each problem, find the volume of the specified solid.

1) The base of a solid is the region enclosed by the ellipse $\frac{x^{2}}{16}+\frac{y^{2}}{36}=1$. Cross-sections perpendicular to the x-axis are equilateral triangles.

$$
\begin{aligned}
& \frac{\sqrt{3}}{4} \int_{-4}^{4}\left(\sqrt{36-\frac{36 x^{2}}{16}}+\sqrt{36-\frac{36 x^{2}}{16}}\right)^{2} d x \\
& =192 \sqrt{3} \approx 332.554
\end{aligned}
$$

2) The base of a solid is the region enclosed by the ellipse $\frac{x^{2}}{9}+\frac{y^{2}}{4}=1$. Cross-sections perpendicular to the x-axis are isosceles right triangles with one leg in the $x y$-plane.

$$
\begin{aligned}
& \frac{1}{2} \int_{-3}^{3}\left(\sqrt{4-\frac{4 x^{2}}{9}}+\sqrt{4-\frac{4 x^{2}}{9}}\right)^{2} d x \\
& =32
\end{aligned}
$$

3) The base of a solid is the region enclosed by the ellipse $\frac{x^{2}}{4}+\frac{y^{2}}{9}=1$. Cross-sections perpendicular to the x-axis are isosceles right triangles with the hypotenuse in the base.
$\frac{1}{4} \int_{-2}^{2}\left(\sqrt{9-\frac{9 x^{2}}{4}}+\sqrt{9-\frac{9 x^{2}}{4}}\right)^{2} d x$
$=24$
4) The base of a solid is the region enclosed by the circle $x^{2}+y^{2}=36$. Cross-sections perpendicular to the x-axis are isosceles right triangles with one leg in the $x y$-plane.

$$
\begin{aligned}
& \frac{1}{2} \int_{-6}^{6}\left(\sqrt{36-x^{2}}+\sqrt{36-x^{2}}\right)^{2} d x \\
& =576
\end{aligned}
$$

5) The base of a solid is the region enclosed by the semicircle $y=\sqrt{36-x^{2}}$ and the x-axis. Cross-sections perpendicular to the x-axis are isosceles right triangles with one leg in the $x y$ -plane.

$$
\begin{aligned}
& \frac{1}{2} \int_{-6}^{6}\left(\sqrt{36-x^{2}}\right)^{2} d x \\
& =144
\end{aligned}
$$

6) The base of a solid is the region enclosed by the ellipse $\frac{x^{2}}{49}+\frac{y^{2}}{9}=1$. Cross-sections perpendicular to the x-axis are isosceles right triangles with one leg in the $x y$-plane.

$$
\begin{aligned}
& \frac{1}{2} \int_{-7}^{7}\left(\sqrt{9-\frac{9 x^{2}}{49}}+\sqrt{9-\frac{9 x^{2}}{49}}\right)^{2} d x \\
& =168
\end{aligned}
$$

7) The base of a solid is the region enclosed by the semicircle $y=\sqrt{25-x^{2}}$ and the x-axis.

Cross-sections perpendicular to the x-axis are isosceles right triangles with the hypotenuse in the base.

$$
\begin{aligned}
& \frac{1}{4} \int_{-5}^{5}\left(\sqrt{25-x^{2}}\right)^{2} d x \\
& =\frac{125}{3} \approx 41.667
\end{aligned}
$$

8) The base of a solid is the region enclosed by the semicircle $y=\sqrt{49-x^{2}}$ and the x-axis. Cross-sections perpendicular to the x-axis are isosceles right triangles with one leg in the $x y$ -plane.

$$
\begin{aligned}
& \frac{1}{2} \int_{-7}^{7}\left(\sqrt{49-x^{2}}\right)^{2} d x \\
& =\frac{686}{3} \approx 228.667
\end{aligned}
$$

9) The base of a solid is the region enclosed by the circle $x^{2}+y^{2}=49$. Cross-sections perpendicular to the x-axis are isosceles right triangles with the hypotenuse in the base.

$$
\begin{aligned}
& \frac{1}{4} \int_{-7}^{7}\left(\sqrt{49-x^{2}}+\sqrt{49-x^{2}}\right)^{2} d x \\
& =\frac{1372}{3} \approx 457.333
\end{aligned}
$$

10) The base of a solid is the region enclosed by $y=-x^{2}+4$ and $y=0$. Cross-sections perpendicular to the x-axis are equilateral triangles.

$$
\begin{aligned}
& \frac{\sqrt{3}}{4} \int_{-2}^{2}\left(-x^{2}+4\right)^{2} d x \\
& =\frac{128 \sqrt{3}}{15} \approx 14.78
\end{aligned}
$$

11) The base of a solid is the region enclosed by the ellipse $\frac{x^{2}}{16}+\frac{y^{2}}{49}=1$. Cross-sections perpendicular to the x-axis are isosceles right triangles with the hypotenuse in the base.
$\frac{1}{4} \int_{-4}^{4}\left(\sqrt{49-\frac{49 x^{2}}{16}}+\sqrt{49-\frac{49 x^{2}}{16}}\right)^{2} d x$
$=\frac{784}{3} \approx 261.333$
12) The base of a solid is the region enclosed by the circle $x^{2}+y^{2}=9$. Cross-sections perpendicular to the x-axis are isosceles right triangles with the hypotenuse in the base.

$$
\begin{aligned}
& \frac{1}{4} \int_{-3}^{3}\left(\sqrt{9-x^{2}}+\sqrt{9-x^{2}}\right)^{2} d x \\
& =36
\end{aligned}
$$

