F - Inequalities, Lesson 4, Graphing Linear Inequalities (r. 2018)

INEQUALITIES

Graphing Linear Inequalities

Common Core Standard
A-REI. 12 Graph the solutions to a linear inequality in two variables as a half-plane (excluding the boundary in the case of a strict inequality), and graph the solution set to a system of linear inequalities in two variables as the intersection of the corresponding half-planes.

Next Generation Standard
AI-A.REI. 12 Graph the solutions to a linear inequality in two variables as a half-plane (excluding the boundary in the case of a strict inequality), and graph the solution set to a system of linear inequalities in two variables as the intersection of the corresponding half-planes.
Note: Graphing linear equations is a fluency recommendation for Algebra I. Students become fluent in solving characteristic problems involving the analytic geometry of lines, such as writing down the equation of a line given a point and a slope. Such fluency can support them in solving less routine mathematical problems involving linearity; as well as modeling linear phenomena (including modeling using systems of linear inequalities in two variables).

LEARNING OBJECTIVES

Students will be able to:

1) Graph a single inequality involving two variables on a coordinate plane.
a. Determine if the boundary line is a solid line or a dashed line.
b. Determine if the solution set is shaded above or below the boundary line.

Overview of Lesson

Teacher Centered Introduction	Student Centered Activities
Overview of Lesson	guided practice \leftarrow Teacher: anticipates, monitors, selects, sequences, and connects student work
- activate students' prior knowledge	- developing essential skills
- vocabulary	- Regents exam questions
- learning objective(s)	- formative assessment assignment (exit slip, explain the math, or journal
- big ideas: direct instruction	
- modeling	

boundary line dashed line linear inequality

VOCABULARY
shading
solid line
solution set
testing a solution

BIG IDEAS

A linear inequality describes a region of the coordinate plane that has a boundary line. Every point in the region is a solution of the inequality.

The solution set of a linear inequality includes all ordered pairs that make the inequality true. The graph of an inequality represents the solution set.

Graphing a Linear Inequality

Step One. Change the inequality sign to an equal sign and graph the boundary line in the same manner that you would graph a linear equation.

- When the inequality sign contains an equality bar beneath it, use a solid line for the boundary. Any point (ordered pair) on the boundary line is part of the solution set.
- When the inequality sign does not contain an equality bar beneath it, use a dashed line for the boundary. Any point (ordered pair) on the boundary line is not part of the solution set.
Step Two. Restore the inequality sign and test a point to see which side of the boundary line the solution is on. The point $(0,0)$ is a good point to test since it simplifies any multiplication. However, if the boundary line passes through the point $(0,0)$, another point not on the boundary line must be selected for testing.
- If the test point makes the inequality true, shade the side of the boundary line that includes the test point.
- If the test point makes the inequality not true, shade the side of the boundary line does not include the test point.
NOTE: If the dependent variable is isolated in the left expression of the inequality, a simplified way to determine which side of the line to shade is as follows:
- If the inequality sign contains $>$, shade above the boundary line.
o Examples: $y>x$ and $y \geq x$ are shaded above the boundary line.
- If the inequality sign contains $<$, shade below the boundary line.

0 Examples: $y<x$ and $y \leq x$ are shaded below the boundary line.
Example Graph $y<2 x+3$
First, change the inequality sign an equal sign and graph the line: $y=2 x+3$. This is the boundary line of the solution. Since there is no equality line beneath the inequality symbol, use a dashed line for the boundary.
NOTE: A graphing calculator can be used if the inequality has the dependent variable isolated as the in the left expression of the inequality

Next, test a point to see which side of the boundary line the solution is on. Try (0,0), since it makes the multiplication easy, but remember that any point will do.

$$
y<2 x+3
$$

$0<2(0)+3$
$0<3$ True，so the solution of the inequality is the region that contains the point $(0,0)$ ． Therefore，we shade the side of the boundary line that contains the point $(0,0)$ ．

Note：Most graphing calculators do not have the ability to distinguish between solid and dashed lines on a graph of an inequality．

DEVELOPING ESSENTIAL SKILLS

Graph the inequality $3 x+2 y \leq y+6$ and determine if point with coordinates $(3,8)$ is in the solution set．
STEP 1．Isolate the dependent variable in the left expression of the inequality．

$$
\begin{aligned}
3 x+2 y & \leq y+6 \\
3 x+y & \leq 6 \\
y & \leq-3 x+6
\end{aligned}
$$

STEP 2．Input the transformed inequality in a graphing computer and use the table and graph views to plot the boundary line．

normal float futo real radian mp		LOART	To REAL	Radian	MP ${ }^{\text {I }}$	
Plot1 Plot2 Plot3	X	Y_{1}				
	1	${ }_{3}^{6}$				毛
NY2＝	2	${ }_{-8}^{-3}$				A
	3 4	-3 -6 -6				丰
	5	－912				＂いい
－ $\mathrm{NY}_{5}=$	？	－15				
－Y\％	${ }_{10}$	－－ -24 28				
$\begin{aligned} & \text { IYY }= \\ & \mathbf{N Y g}= \end{aligned}$	$x=0$					

Since the inequality \leq sign contains an equal bar，the boundary line is a solid line and any points on the boundary line are included in the solution set．

STEP 3．Since the dependent variable is isolated in the left expression，and the inequality sign includes ＜，shade the area below the boundary line．（NOTE：The graphing calculator can be set to show $<$ or $>$ inequalities．）

NORMAL FLOAT futo real radifin mp	[NORMAL FLOAT fUto real radifin mp
```Plot1 Plot2 Plot3 - AY \(_{1 \text { 日 }}\) - \(3 X+6\) - \(\mathrm{YY}_{2}=\) - VY \(_{3}=\) - \(\mathrm{YY}_{4}=\) - \(\ Y_{5}=\) - \(\ Y_{6}=\) - VY \(_{7}=\) - \Y8 \(=\) - \Y \(9=\)```	

STEP 4. Inspect the graph to determine if the point $(3,8)$ is included in the solution set. It is not.
STEP 5. Do a check to see if the point $(3,8)$ makes the original inequality true.

$$
\begin{aligned}
3 x+2 y & \leq y+6 \\
3(3)+2(8) & \leq(8)+6 \\
9+16 & \leq 14 \\
25 & \leq 14 \text { not true }
\end{aligned}
$$

Since the inequality is not true for the point $(3,8)$, the point is not in the solution set.

## REGENTS EXAM QUESTIONS (through June 2018)

## A.REI.D.12: Graphing Linear Inequalities

157) Which inequality is represented in the graph below?

158) $y \geq-3 x+4$
159) $y \leq-3 x+4$
160) $y \geq-4 x-3$
161) $y \leq-4 x-3$
162) On the set of axes below, graph the inequality $2 x+y>1$.
163) Which inequality is represented by the graph below?

164) $y \leq 2 x-3$
165) $y \geq 2 x-3$
166) $y \leq-3 x+2$
167) $y \geq-3 x+2$
168) Shawn incorrectly graphed the inequality $-x-2 y \geq 8$ as shown below:


Explain Shawn's mistake.
Graph the inequality correctly on the set of axis below.

161) Graph the inequality $y>2 x-5$ on the set of axes below. State the coordinates of a point in its solution.

162) Graph the inequality $y+4<-2(x-4)$ on the set of axes below.


## SOLUTIONS

157) ANS: 1

Strategy: Use the slope intercept form of a line, $y=m x+b$, to construct the inequality from the graph.
The line passes though points $(0,4)$ and $(1,1)$, so the slope is $m-\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{1-4}{1-0}=\frac{-3}{1}=-3$. The y-intercept is 4 .
The equation of the boundary line is $y=-3 x+4$, so eliminate choices $c$ and $d$.
The shading is above the line, so eliminate choice $b$.
The inequality is $y \geq-3 x+4$, so answer choice $a$ is correct.
PTS: 2
NAT: A.REI.D. 12 TOP: Linear Inequalities
158) ANS:


Strategy: Transpose the inequality, put it in a graphing calculator, then use the table and graph views to create the graph on paper.

STEP 1. Transpose the inequality for input into a graphing calculator.

$$
\begin{aligned}
2 x+y & >1 \\
y & >-2 x+1
\end{aligned}
$$

STEP 2. Inpout the inequality into a graphing calculator.


STEP 3. Use information from the graph and table views to create the graph on paper. Be sure to make the line dotted.

PTS: 2
159) ANS: 2

NAT: A.REI.D. 12 TOP: Graphing Linear Inequalities
160) ANS:

Shawn's mistake was he shaded the wrong side of the boundary line.

$$
\begin{aligned}
& -x-2 y \geq 8 \\
& -x-8 \geq 2 y \\
& \frac{-x}{2}-4 \geq y \\
& y \leq \frac{-x}{2}-4 \\
& y=m x+b
\end{aligned}
$$

Shawn's y-intercept is correct. $b=-4$
Shawn's slope is correct. $m=-\frac{1}{2}$
Shawn correctly graphed a solid boundary line. $\geq$
Shawn's mistake was he shaded the wrong side of the boundary line.


PTS: 4
NAT: A.REI.D. 12
161) ANS:

Strategy: Use the slope intercept form of the inequality to plot the y-intercept at -5 , then use the slope of $\frac{2}{1}$ to find another point on the boundary line. Plot the boundary line as a dashed. Shade the area above the boundary line. Select any number in the shaded area.


Check ( 0,0 ) in the inequality as follows:

$$
\begin{aligned}
& y>2 x-5 \\
& 0>2(0)-5 \\
& 0>-5 \text { True }
\end{aligned}
$$

PTS: 2
NAT: A.REI.D. 12 TOP: Graphing Linear Inequalities

$y<-2 x+4$
PTS: 2 NAT: A.REI.D. 12 TOP: Graphing Linear Inequalities

