Part I

Answer all questions in this part. Each correct answer will receive $2\frac{1}{2}$ credits. No partial credit will be allowed. Unless otherwise specified, answers may be left in terms of π or in radical form.

1. Express cot 285° as a function of a positive acute angle.

2. Express in degrees an angle of $\frac{5\pi}{12}$ radians.

3. Find the number of inches in the radius of a circle in which a central angle of $.4$ radians subtends an arc of 1.2 inches.

4. Find the positive value of cos (arc sin $\frac{3}{5}$).

5. If tan $x = \frac{1}{2}$ and tan $y = \frac{1}{3}$, find tan $(x + y)$.

6. If A is a positive acute angle, express tan A in terms of sin A.

7. Find the smallest positive value of x that satisfies the equation $\frac{\sec^2 x}{4} = 1$.

8. In triangle ABC, $a = 15$, sin $A = .3$ and sin $B = .4$. Find b.

9. In triangle ABC, $b = 8$, $c = 6$ and cos $A = \frac{17}{32}$. Find a.

10. In triangle ABC, $a = 11$, $b = 9$ and $C = 48^\circ$. Find tan $\frac{1}{2} (A - B)$ to the nearest tenth.

11. In triangle ABC, $a = 10$, $b = 8$ and $C = 27^\circ$. Find to the nearest integer the area of triangle ABC.

12. Point A is 20 miles due north of point C. Point B is due east of C and S 39° E from A. Find to the nearest mile the distance from B to C.

13. Find the logarithm of 0.2132.

14. Find to four decimal places the value of cos $28^\circ 33'$.

15. Find to the nearest minute the positive acute angle A if $\log \tan A = 0.0726$.

Directions (16-20): Indicate the correct completion for each of the following by writing the letter a, b, c or d on the line at the right.

16. $\cos (270^\circ + x)$ is equivalent to (a) sin x (b) $-\sin x$ (c) $\cos x$ (d) $-\cos x$

17. If x is acute, the expression $\frac{2 \sin x}{\sin 2x}$ is equivalent to (a) $\frac{2}{x}$ (b) $\frac{2}{\sin x}$ (c) $\csc x$ (d) $\sec x$
18. The maximum value of $3 \cos 2x$ is (a) $\frac{1}{3}$ (b) 2 (c) 3 (d) 6 18_______

19. If x is acute, $\tan x$ equals (a) $\frac{1}{\cot (-x)}$
(b) $\frac{\sin (-x)}{\cos (-x)}$
(c) $\frac{\sin x}{\cos (-x)}$
(d) $\frac{\sin (-x)}{\cos x}$ 19_______

20. The expression $\cos 3x - \cos x$ is equivalent to (a) $-\sin 2x \sin x$ (b) $-2 \sin 2x \sin x$ (c) $2 \cos 2x \cos x$ (d) $\cos 2x$ 20_______

Part II

Answer three questions from this part. Show all work unless otherwise directed.

21. Find all positive values of x less than 360° that satisfy the equation $3 \cos 2x = 5 \cos x + 1$. [10]

22. a. Starting with a formula for $\cos 2A$, derive the formula for $\cos \frac{1}{2}x$ in terms of $\cos x$. [6]

b. Angle x is in quadrant IV and $\cos x = \frac{7}{25}$. Without the use of trigonometric tables, find $\cos \frac{1}{2}x$. [4]

23. a. On the same set of axes, sketch the graph of $y = \cos 2x$ and $y = \tan x$ as x varies from $-\frac{\pi}{2}$ to $\frac{\pi}{2}$. [4, 4]

b. From the graph made in answer to a, find the number of values of x between $-\frac{\pi}{2}$ and $\frac{\pi}{2}$ for which $\tan x - \cos 2x = 0$. [2]

24. Prove the following identities:

a. $\frac{1 + \csc x}{\sec x} = \cos x + \cot x$ [4]

b. $\frac{\sin x}{1 - \cos x} + \frac{\sin x}{1 + \cos x} = 2 \csc x$ [6]

25. In the figure at the right, BC is perpendicular to AC, angle BAC is represented by x and angle DAC is represented by y.

Show that $BD = \frac{\Delta B \sin (x - y)}{\cos y}$. [10]
Part III

Answer two questions from this part. Show all work.

26. In triangle ABC, $a = 230$, $b = 216$ and $c = 194$. Find angle A to the nearest degree. [10]

27. Point B is 47 miles N 14° E from A. Point C is S 52° E from B and N 67° E from A. Find to the nearest mile the distance from A to C. [6, 4]

28. In triangle ABC, angle $B = 49^\circ 40'$, $c = 83.4$, $b = 69.5$ and angle C is obtuse. Find angle A to the nearest ten minutes. [10]

29. Forces of 224 pounds and 367 pounds act upon a body at an angle of $65^\circ 20'$ with each other. Find to the nearest ten minutes the angle which the resultant makes with the smaller force. [10]