June 18, 1959

Part I

Answer all questions in this part. Each correct answer will receive $2\frac{1}{2}$ credits. No partial credit will be allowed. Unless otherwise specified, answers may be left in terms of π or in radical form.

in terms of π or in radical form.	
1. Express cot 285° as a function of a positive acute angle.	1
2. Express in degrees an angle of $\frac{5\pi}{12}$ radians.	2
3. Find the number of inches in the radius of a circle in which a central angle of .4 radians subtends an arc of 1.2 inches.	3
4. Find the positive value of cos (arc sin $\frac{2}{3}$).	4
5. If $\tan x = \frac{1}{2}$ and $\tan y = \frac{1}{3}$, find $\tan (x + y)$.	5
6. If A is a positive acute angle, express $\tan A$ in terms of $\sin A$.	6
7. Find the smallest positive value of x that satisfies the equation	
$\frac{\sec^2 x}{4} = 1.$	7
8. In triangle ABC, $a = 15$, $\sin A = .3$ and $\sin B = .4$. Find b.	8
9. In triangle ABC, $b = 8$, $c = 6$ and $\cos A = \frac{17}{32}$. Find a.	9
10. In triangle ABC, $a=11$, $b=9$ and $C=48^{\circ}$. Find tan $\frac{1}{2}(A-B)$ to the nearest tenth.	10
11. In triangle ABC, $a=10$, $b=8$ and $C=27^{\circ}$. Find to the nearest integer the area of triangle ABC.	11
12. Point A is 20 miles due north of point C . Point B is due east of C and S 39° E from A . Find to the nearest mile the distance from B to C .	12
13. Find the logarithm of 0.2132.	13
14. Find to four decimal places the value of cos 28° 33'.	14
15. Find to the nearest minute the positive acute angle A if $\log \tan A = 0.0726$.	15
Directions (16-20): Indicate the correct completion for each of by writing the letter a , b , c or d on the line at the right.	the following
16. Cos $(270^{\circ} + x)$ is equivalent to (a) $\sin x$ (b) $-\sin x$ (c) $\cos x$ (d) $-\cos x$	16
17. If x is acute, the expression $\frac{2 \sin x}{\sin 2x}$ is equivalent to (a) $\frac{2}{x}$	
(b) $\frac{2}{\sin x}$ (c) $\csc x$ (d) $\sec x$	17

- 18. The maximum value of 3 cos 2x is (a) $\frac{1}{3}$ (b) 2 (c) 3 (d) 6
 - 19. If x is acute, $\tan x$ equals $\cot (-x)$
- (b) $\frac{\sin (-x)}{\cos (-x)}$ (c) $\frac{\sin x}{\cos (-x)}$ (d) $\frac{\sin (-x)}{\cos x}$ 19_____
- 20. The expression $\cos 3x \cos x$ is equivalent to (a) $-\sin 2x \sin x$ (b) $-2 \sin 2x \sin x$ (c) $2 \cos 2x \cos x$ (d) $\cos 2x$ 20______

Part II

Answer three questions from this part. Show all work unless otherwise directed.

- 21. Find all positive values of x less than 360° that satisfy the equation $3\cos 2x = 5\cos x + 1$. [10]
 - 22. a. Starting with a formula for $\cos 2A$, derive the formula for $\cos \frac{1}{2}x$ in terms of $\cos x$. [6]
 - b. Angle x is in quadrant IV and $\cos x = \frac{7}{25}$. Without the use of trigonometric tables, find $\cos \frac{1}{2}x$. [4]
- 23. a. On the same set of axes, sketch the graph of $y = \cos 2x$ and $y = \tan x$ as x varies from $-\frac{\pi}{2}$ to $\frac{\pi}{2}$. [4, 4]
 - b. From the graph made in answer to a, find the number of values of x between $-\frac{\pi}{2}$ and $\frac{\pi}{2}$ for which tan $x \cos 2x = 0$. [2]
 - 24. Prove the following identities:

a.
$$\frac{1 + \csc x}{\sec x} = \cos x + \cot x \quad [4]$$

$$\sin x \quad \sin x$$

b.
$$\frac{\sin x}{1 - \cos x} + \frac{\sin x}{1 + \cos x} = 2 \csc x$$
 [6]

25. In the figure at the right, BC is perpendicular to AC, angle BAC is represented by x and angle DAC is represented by y.

Show that
$$BD = \frac{AB \sin (x - y)}{\cos y}$$
. [10]

Part III

Answer two questions from this part. Show all work.

- 26. In triangle ABC, a=230, b=216 and c=194. Find angle A to the nearest degree. [10]
- 27. Point B is 47 miles N 14° E from A. Point C is S 52° E from B and N 67° E from A. Find to the nearest mile the distance from A to C. [6, 4]
- 28. In triangle ABC, angle $B=49^{\circ}$ 40', c=83.4, b=69.5 and angle C is obtuse. Find angle A to the nearest ten minutes. [10]
- 29. Forces of 224 pounds and 367 pounds act upon a body at an angle of 65° 20' with each other. Find to the nearest ten minutes the angle which the resultant makes with the smaller force. [10]