The University of the State of New York
 321st High School Examination
 TRIGONOMETRY

Thursday, June $24,1954-9.15$ a. m. to 12.15 p. m., only

Instructions

Part I is to be done first and the maximum time allowed for it is one and one half hours. At the end of that time, this part of the examination must be detached and will be collected by the teacher. If you finish part I before the signal to stop is given, you may begin part II.

Write at top of first page of answer paper to parts II and III (a) name of school where you have studied, (b) number of weeks and recitations a week in trigonometry.

The minimum time requirement is four or five recitations a week for half a school year, Answer five questions from parts $I I$ and III, including at least two questions from each part.

Part II

Answer at least two questions from part II. All work, including computation, should be shown.
21 Find all values of x greater than 0° and less than 360° that satisfy the following equation: [Express approximate values of x to the nearest degree.] [10]

$$
7 \cos ^{2} x-4 \sin x=4
$$

$22 a$ Starting with formulas for $\sin (x+y)$ and $\cos (x+y)$, derive the formula for $\tan (x+y)$ in terms of $\tan x$ and $\tan y$. [5]
b Prove the identity: $\frac{2 \cos x}{\cot x \cos x-\sin x}=\tan 2 x$
$23 a$ Draw the graph of $y=\cos 2 x$ as x varies from 0 to 2π radians at intervals of $\frac{\pi}{6}$.
b Place on the graph the letter A to indicate the point used in finding the value of y for which x is equal to $\frac{\pi}{12}$.
c From the graph made in answer to a, determine the number of values of x between 0 and 2π for which y is equal to 0.6 . [2]

24 In triangle $A B C$, angle $A C B$ is a right angle. Using the letters given on the figure, show that each of the following relationships is true:
a $B D=\frac{B C \cos y}{\sin (x+y)}$
b $B D=\frac{A B \sin x \cos y}{\sin (x+y)}$
c $B D=\frac{1}{2} A B$ if $x=y$ [Use the relationship given in b.]

Trigonometry

Part III

Answer at least two questions from part III. All work, including computation, should be shown.
25 In triangle $A B C, A B=16.6, B C=12.5$ and $A C=22.7$. Find angle B to the nearest degree. [10]

26 The navigator of a ship sights a lighthouse bearing N $32^{\circ} \mathrm{W}$. After the ship has sailed on course $\mathrm{N} 27^{\circ}$ E for 3.4 miles, the navigator then finds that the bearing of the lighthouse is $\mathrm{N} 78^{\circ} \mathrm{W}$. Find to the nearest mile the distance of the ship from the lighthouse at the time the second bearing was taken. [6, 4]

27 Two forces of 320 pounds and 265 pounds act on a body at an angle of 72° with each other. Find to the nearest degree the angle formed by the lines of action of the resultant and the larger force. [10]
$28 A B C D$ is a trapezoid with leg $D A$ perpendicular to base $A B$. Base $D C=9$, angle $C=118^{\circ}$ and diagonal $B D$ makes an angle of 35° with $A B$. Find to the nearest integer the altitude of the trapezoid. [10]

Be sure you have answered a total of five questions from parts II and III.

Fill in the following lines:

Name of pupil
Name of school

Part I

Answer all questions in part I. Each correct answer will receive $21 / 2$ credits. No partial credit will be allowed.

1 Find the value of $\tan \frac{\pi}{4}$
2 Find the radius of a circle in which a central angle of 3 radians subtends an arc of 24 feet.

3 If $3 \cot A=2$, express A as an inverse trigonometric function.

4 Find n if $\log n=1.3807$.
5 Find to the nearest minute the positive acute angle whose cosine is 0.9403 .

6 Find $\log \sin 54^{\circ} 32^{\prime}$.
7 Ship C is 100 miles due east of location A, and ship B is directly north of C and $\mathrm{N} 70^{\circ} \mathrm{E}$ from A. Find to the nearest mile the distance from B to C.

8 In triangle $A B C, a=10, b=8$ and $C=54^{\circ}$. Find to the nearest integer the area of the triangle.

9 In triangle $A B C, a=8.4, b=10$ and $\sin A=0.42$. Find $\sin B$.

10 In triangle $A B C, a=5, b=8$ and $c=10$. Find $\cos B$.

11 If $\cos \theta=\frac{5}{7}$, find $\cos 2 \theta$.
12 If θ is a positive acute angle and $\cos \theta=a$, express $\sin \frac{\theta}{2}$ in terms of \boldsymbol{a}.

13 Express $\sin \left(x-30^{\circ}\right)$ in terms of $\sin x$ and $\cos x$. [Answer may be left in radical form.]
1.

2

3
4.

5
6.

7
8.
9. \qquad

$$
12
$$

Directions (14-20): Indicate the correct completion for each statement by writing the letter a, b or c on the line at the right.
$14 \operatorname{Sin} 280^{\circ}$ equals
(a) $\cos 10^{\circ}$
(b) $-\cos 10^{\circ}$
(c) $-\cos 80^{\circ}$
14......
$15 \operatorname{Cos} 100^{\circ}+\cos 20^{\circ}$ equals
$\begin{array}{ll}\text { (a) } \cos 40^{\circ} & \text { (b) } \sin 40^{\circ}\end{array}$
(c) $\sqrt{3} \cos 40^{\circ}$
15......

16 If $\tan \theta$ is negative and $\cos \theta$ is positive then θ lies in the
(a) second quadrant
(b) third quadrant
(c) fourth quadrant
16......

17 The maximum value of $3 \sin 2 x$ is
(a) 1
(b) 3
(c) 6
17......

18 In triangle $A B C$ if $\sin A=x$ and if $\cos B=x$, then the angle $(A+B)$ is (a) acute (b) right (c) obtuse
18......

19 Using the data $A=44^{\circ} 30^{\prime}, a=15$ and $b=20, \quad(a)$ only one triangle can be constructed (b) two triangles can be constructed to construct a triangle
(c) it is not possible

20 As x varies from $\frac{\pi}{2}$ to $\frac{3 \pi}{2}$ radians, the graphs of $y=\tan x$ and $y=\sin \frac{x}{2}$ when drawn on the same set of axes intersect in points (c) three points
(a) one point
(b) two
19......
20......

INSTRUCTIONS FOR RATING
 TRIGONOMETRY

Thursday, June 24, $1954-9.15$ a. m. to 12.15 p. m., only
Use only red ink or pencil in rating Regents papers. Do not attempt to correct the pupil's work by making insertions or changes of any kind. Use check marks to indicate pupil errors.

Unless otherwise specified, mathematically correct variations in the answers will be allowed. In problems involving logarithms, answers should be left correct to four significant digits unless directions say otherwise. Units need not be given when the wording of the questions allows such omissions.

Part I

Allow $2 \frac{1}{2}$ credits for each correct answer; allow no partial credit. For questions 14-20, allow credit if the pupil has written the correct answer instead of the letter a, b or c.
(1) 1
(2) 8
(12) $\sqrt{\frac{1-a}{2}}$
(3) $A=\cot ^{-1} \frac{2}{3}$
(4) 24.03
(5) $19^{\circ} 54^{\prime}$
(6) $9.9109-10$
(13) $\frac{\sqrt{3}}{2} \sin x-\frac{1}{2} \cos x$
(7) 36
(8) 32
(9) $\frac{1}{2}$
(10) $\frac{61}{100}$
(11) $\frac{1}{49}$

$$
(14) b
$$

$$
\begin{equation*}
\text { (15) } a \tag{16}
\end{equation*}
$$

(19) b
(20) a

