TRIGONOMETRY

Tuesday, June 13, 1911 — 1:15 to 4:15 p.m., only

Write at top of first page of answer paper (a) name of school where you have studied, (b) number of weeks and recitations a week in trigonometry.
The minimum time requirement in either plane trigonometry or spheric trigonometry is one recitation a week for a school year or two recitations a week for half a school year.

To receive credit for plane trigonometry students should answer three questions from group I and three questions from group II.
To receive credit for spheric trigonometry students should answer three questions from group I and three questions from group III.
Students who pass spheric trigonometry will receive credit for plane trigonometry also.

Group I
1. Express cos x, sec x and tan x in terms of tan \(\frac{1}{2} x \).
2. Find the values of \(A \) between 0° and 360° that satisfy the equation \(\sin A + \cos A = \sqrt{2} \).
3. Prove that \(\sin 45° = \frac{1}{\sqrt{2}} \); tan 30° = \(\frac{1}{\sqrt{3}} \); cos 60° = \(\frac{1}{2} \).
4. Solve, for the value of \(x \), the equation \(\sin^2 x - \cos^2 x = \frac{1}{2} \). Verify the result.

Group II
5. Prove that in a plane triangle \(a = b \cos C + c \cos B \).
6. From two points \(A \) and \(C \), 20 feet apart, a buoy \(B \) is observed; the angle \(CAB \) is 104°, the angle \(ACB \) is 57°. How far is the buoy from \(A \)?
7. Given \(b = 420 \), \(a = 540 \), \(C = 52° 6' \); find the angle \(A \).
8. Complete and prove \(\sin (a + b) = \)

Group III
9. Deduce the following formulas for right spheric triangles [simply applying Napier's rule is not sufficient]:
 \[
 \cos A = \cos a \sin B \\
 \cos A = \tan b \cot c
 \]
10. Prove that if in a right spheric triangle the two oblique angles are both greater than 90°, the hypotenuse is less than 90°.
11. In a right spheric triangle given \(c = 70° 30' \), \(A = 100° \); find \(a \) and \(b \).
12. Given \(a = 58° \), \(b = 137° 20' \), \(B = 131° 20' \); find \(A \) and \(C \).