The University of the State of New York
 326th High School Examination
 TRIGONOMETRY

Thursday, January 26, 1956 - 9.15 a.m. to 12.15 p.m., only

Instructions
Part I is to be done first and the maximum time allowed for it is one and one half hours. At the end of that time, this part of the examination must be detached and will be collected by the teacher. If you finish part I before the signal to stop is given, you may begin part II.

Write at top of first page of answer paper to parts II and III (a) name of school where you have studied, (b) number of weeks and recitations a week in trigonometry.

The minimum time requirement is four or five recitations a week for half a school year.
Part II
Answer three questions from this part. Show all work unless otherwise directed.
21 Find all values of x between 0° and 360° which satisfy the equation $5 \sin ^{2} x-7 \cos x+1=0$. [Answers may be expressed to the nearest degree.] [10]
$22 a$ Starting with the formulas for $\sin (A+B)$ and $\cos (A+B)$, derive the formula for $\tan (A+B)$ in terms of $\tan A$ and $\tan B$. [6]
b Prove the following identity:

$$
\begin{equation*}
\frac{\cos A+\sin A \tan A}{\sin A \sec A}=\csc A \tag{4}
\end{equation*}
$$

$23 a$ Sketch the graph of $y=\tan x$ as x varies from 0 to 2π radians.
b On the set of axes used in part a, sketch the graph of $y=2 \cos x$ as x varies from 0 to 2π radians. [4]
c From the graphs made in answer to parts a and b, determine a value of x for which $\tan x-2 \cos x=2$. [2]

24 In the case of each of the following, the statement is always true, sometimes true or never true. List the letters $a-e$ on your answer paper and after each letter indicate the correct answer by writing the word always, sometimes or never. [10]
a If $\cos x$ is negative, $\tan x$ is negative.
$b \operatorname{Sin}(-x)$ is equal to $-\sin x$.
c If $\sin 2 x=a$ and $\cos 2 x=b$, then $a^{2}+b^{2}$ is equal to 1 .
d If x is an angle between 90° and 270°, $\sin \frac{1}{2} x$ is negative.
e If two sides and the angle opposite one of these sides is given, a triangle is determined.

25 In triangle $A D C, B$ is a point on $A C$ such that $B D$ is perpendicular to $A D$, angles $B D C$ and $B C D$ are each represented by x and $B C$ is represented by r. Show that each of the following relationships is true:

$$
\begin{align*}
& a D C=2 r \cos x \tag{4}\\
& b A C=\frac{2 r \cos ^{2} x}{\cos 2 x} \tag{6}
\end{align*}
$$

Trigononetry

Part III
Answer two questions from this part. Show all work.
26 In triangle $A B C, a=57.9, b=34.4$ and angle $C=114^{\circ} 20^{\circ}$. Find angle A to the nearest ten minutes. [10]

27 From a ship K, radio stations A and B bear $N 48^{\circ} \mathrm{E}$ and $\mathrm{S} 26^{\circ} \mathrm{E}$ respectively. Station A is known to be 125 miles from B and in a direction $\mathcal{N} 17^{\circ} \mathrm{E}$ from B. Find, to the narest male, the distance of the ship irom .4. $[5,5]$

28 A body is acted on by a force of 430 pounds and by a second force of 322 pounds. The resultant iorce is 594 pounds. Find, to the ncarest degree, the angle formed by the resultant and the greater force. [10]

29 A vertical pole and a tower 136 feet high stand on the same horizontal plane. From the top of the tower the angles of depression of the top and botom of the pole are $32^{\circ} 20^{\prime}$ and $48^{\circ} 20^{\circ}$ respectively. Find, to the ncarest foot, the height of the pole. [4, 6]

Triconometry

Fill in the following lines:

Name of pupil.... .Name of school.......

Part I

Answer all questions in this part. Each correct answer will receive $21 / 2$ credits. No partial credit will be allowed. Unless otherwise specified, answers may be left in terms of π or in radical form.

1 Express $\sin 230^{\circ}$ as a function of a positive acute angle.
1.
2..
3.
4.
5.
6.

7
8.

9

10

11
11 In triangle $A B C, a=5, b=7$ and $\cos C=\frac{1}{7}$. Find c.
12 Two sides of a parallelogram are a and b and the angle between them is C. Express the area of the parallelogram in terms of a, b and angle C.

13 If $\cos x=\frac{7}{9}$, find $\cos 2 x$.

14 If A is a positive acute angle and $\sec A=r$, express $\tan A$ in terms of r.

15 If the maximum value of $r \sin 3 x$ is 6 , find r.

Trigonometry

Directions (16-20): Indicate the correct completion for cach of the following by writing on the line at the right the letter a, b or c.
16 If $\cos x=\frac{7}{11}$ and x is acute, $\sin \frac{x}{2}$ is equal to
(a) $\sqrt{\frac{2}{11}}$
(b) $\sqrt{\frac{8}{11}}$
(c) $\sqrt{\frac{9}{11}}$

$$
16 .
$$

$17 \operatorname{Sin} 3 x+\sin x$ is equal to
(a) $\sin 4 x$
(b) $2 \sin 2 x \cos x$
(c) $2 \sin x \cos 2 x$

18 The statement $\sin ^{2} x-\cos ^{2} x=1$ is (a) true for all values of x
$\begin{array}{ll}\text { (b) true for only certain values of } x & \text { (c) not true for any values of } x\end{array}$ 17 $1 N$
$19 \operatorname{Sec} \theta=\infty$ (infinity) when θ is equal to
(a) 0°
(b) 90°
(c) 180°

19

20 As x increases from 0 to 2π radians, the graph of $y=\cos \frac{1}{2} x$ intersects the x-axis in (a)one point (b) two point (c)four points 20

FOR TEACHERS ONLY

INSTRUCTIONS FOR RATING TRIGONOMETRY

Thursday, January 26, 1956 - 9.15 a.m. to 12.15 p.m., only

Use only red ink or pencil in rating Regents papers. Do not attempt to correct the pupil's work by making insertions or changes of any kind. Use check marks to indicate pupil errors.

Unless otherwise specified, mathematically correct variations in the answers will be allowed. In problems involving logarithms, answers should be left correct to four significant digits unless directions say otherwise. Units need not be given when the wording of the questions allows such omissions.

Part I

Allow $2 \frac{1}{2}$ credits for each correct answer; allow no partial credit. Do not allow credit if the answer to question 7 is not expressed to four decimal places. For questions 16-20, allow credit if the pupil has written the correct answer instead of the letter a, b or c.
(1) $-\cos 40^{\circ}$ or $-\sin 50^{\circ}$
(11) 8
(2) $\frac{11 \pi}{20}$
(3) 2
(4) 30°
(12) $a b \sin C$
(5) 60°
(13) $\frac{17}{81}$
(6) 1955
(14) $\sqrt{r^{2}-1}$
(15) 6
(7) 0.7484
(16) a
(8) $56^{\circ} 24^{\prime}$
(17) b
(9) 8 or 8.004
(18) b
(10) 20
(19) b
(20) a

