HIGH SCHOOL MATHEMATICS: COURSE III-JUNE 1983 (1)

Part I

Answer 30 questions from this part. Each correct answer will receive 2 credits. No partial credit will be allowed. Write your answers on a separate sheet. Where applicable, answers may be left in terms of π or in radical form.

- 1 Express the sum of $\sqrt{-49}$ and $2\sqrt{-16}$ as a monomial in terms of *i*.
- 2 Find the value of $\sum_{n=1}^{3}$ (2n-1).
- 3 Express $\frac{1}{3 \sqrt{3}}$ as an equivalent fraction

with a rational denominator.

4 Perform the indicated operations and express in simplest form:

$$\left(\frac{x+y}{x}\right)\left(\frac{xy}{x^2+2xy+y^2}\right)$$

- 5 Solve for $y: \frac{3}{y} = 2 + \frac{5}{y}$
- 6 In the diagram below, chords \overline{AB} and \overline{CD} of circle O intersect in E. If AE = 6, EB = 4, CE = x, and ED = 6x, find CE.

7 Given the set of functions: {sin x,cos x,tan x}. What is the probability that a function chosen at random from this set is positive in both Quadrants I and III?

- 8 If $\log n = 0.5459$, find n to the nearest thousandth.
- 9 Find the numerical value of $\sin (-270^{\circ})$.
- 10 If tan $A = \frac{1}{3}$, find the value of tan 2A.
- 11 A diagonal is drawn in a rectangle whose dimensions are 10 cm by 50 cm. Find the tangent of the angle formed by the diagonal and the longer side.
- 12 Express the product 5i(3i 2) as a complex number in a + bi form.
- 13 In the accompanying diagram of $\triangle RST$, ST = 3 and RT = 4. If $m \angle T = 30$, find the area of $\triangle RST$.

- 14 If $\cos x = \frac{1}{8}$ where x is an acute angle, find the value of $\cos \frac{x}{2}$.
- 15 Solve the equation $\sqrt{2 \sin x + 7} = 3$ for the smallest positive value of x.
- 16 If $3^{x+2} = 9^x$, what is the value of x?
- 17 If $f(x) = 3 \cos \frac{x}{3}$, find $f(\pi)$.
- 18 In $\triangle ABC$, a = 4, b = 5, and $\cos C = \frac{1}{8}$. Find the length of side c.

19 In the accompanying diagram, \overrightarrow{AB} is tangent to circle O at B and \overrightarrow{ADC} is a secant.

If $\widehat{mBD} = 50$ and $\widehat{mBC} = 160$, find $m \angle A$.

Directions (20-35): For each question chosen, write on the separate answer sheet the numeral preceding the word or expression that best completes the statement or answers the question.

- 20 In the accompanying diagram, \overline{OP} forms an angle of 15° with the x-axis. The reflection of \overline{OP} in the y-axis is \overline{OP}' . What is the measure of $\angle POP'$?
 - (1) 30
 - (2) 75
 - (3) 135
 - (4) 150

- 21 A set of measures that follows a bell curve has a mean of 50 and standard deviation of 5. Approximately what percent of the measures fall between 45 and 55?
 - (1) 34

(3) 95

(2) **68**

- (4) 98
- 22 The expression $\sin \theta(\csc \theta \sin \theta)$ is equivalent to
 - (1) 1

(3) $\tan \theta - 1$

 $(2) \cos \theta$

(4) $\cos^2 \theta$

(1)
$$\{(x,y)|y = \sin x\}$$
 (3) $\{(x,y)|y = 4\}$

$$(2) \{(x,y)|y=-x\} \qquad (4) \{(x,y)|x=4\}$$

24 The graph of the equation $y = x^2 + 2x - 8$ intersects the x-axis at

$$(2)$$
 -2 and 4 (4) 2 and 4

25 The expression $\log 3x$ is equivalent to

(1)
$$(\log 3)(\log x)$$
 (3) $\log 3 + \log x$
(2) $3 \log x$ (4) $\log (3 + x)$

26 A fair die is tossed three times. The probability of obtaining exactly 2 fives is

(1)
$$\frac{1}{72}$$
 (3) $\frac{25}{72}$

$$(2) \ \frac{5}{72} \qquad \qquad (4) \ \frac{67}{72}$$

27 The roots of the equation $-x^2 + x + 6 = 0$ are

- (1) real, rational, and unequal
- (2) real, irrational, and unequal
- (3) real, rational, and equal
- (4) imaginary

28 If $y = \cos(\operatorname{Arc sin} \frac{\sqrt{3}}{2})$, then y is equal to

(1)
$$\frac{\sqrt{3}}{2}$$
 (3) 30°

(2)
$$\frac{1}{2}$$
 (4) 60°

29 A circle has a radius of 6 centimeters. What is the number of radians in a central angle which has an arc of length 12 centimeters?

$$(1) \frac{1}{2}$$
 (3) 18

30 What is the solution set of the equation

$$|3x + 2| = 5$$
?

 $(1) \{1\}$

(3) $\{1, -\frac{7}{2}\}$

 $(2) \left\{ \frac{7}{2} \right\}$

- $(4) \{-1,\frac{7}{2}\}$
- 31 Which is the fourth term in the expansion of $(x + 3)^5$?
 - (1) $270x^2$

(3) + 405x

(2) $135x^2$

- (4) + 135x
- 32 The value of $\frac{1}{9^{-3}}$ is
 - $(1) \frac{1}{9}$

(3) 6

 $(2) \frac{1}{6}$

- (4) 8
- 33 Which graph represents the reflection over the x-axis of the curve $y = \sin x$?

- 34 As angle θ increases from 0 to π , the value of $\cos \theta$ will
 - (1) decrease, only
 - (2) increase, only
 - (3) decrease then increase
 - (4) increase then decrease
- 35 Figure B is the image of figure A under which single transformation?
 - (1) line reflection
 - (2) translation
 - (3) rotation
 - (4) glide-reflection

Part II

Answer four questions from this part. Show all work unless otherwise directed.

- 36 a On the same set of axes, sketch and label the graphs of $y = \sin x$ and $y = 2 \cos x$ in the interval $-\pi \le x \le \pi$. [8]
 - b For how many values in the interval $-\pi \le x \le \pi$ does sin $x = 2 \cos x$? [2]
- 37 A class of students obtained the following results on a test:
 - 4 students received 90%
 - 5 students received 80%
 - 8 students received 70%
 - 3 students received 60%

For these scores, find the:

- a mean [3]
- b standard deviation to the nearest tenth [7]
- 38 a Solve the equation $x^2 + 2x + 10 = 0$ and express the roots in a + bi form. [4]
 - b Prove the identity:

$$\sin 2x = \frac{2 \tan x}{1 + \tan^2 x} \quad [6]$$

- 39 a Given the function $f = \{(x,y)|y = \log_2 x\}$.
 - (1) Sketch the graph of f. [4]
 - (2) Write an equation for f⁻¹, the inverse of f. [2]
 - b Using logarithms, find $\sqrt[3]{432}$ to the nearest hundredth. [4]
- 40 Given points A(0,0), B(8,6), and C(8,0).
 - a Graph $\triangle ABC$. [1]
 - b Graph and state the coordinates of $\triangle A'B'C'$, the image of $\triangle ABC$ after the transformation $D:(x,y) \to (\frac{3}{2}x, \frac{3}{2}y)$. [3]

HIGH SCHOOL MATHEMATICS: COURSE III-JUNE 1983 (7)

- c Graph and state the coordinates of $\triangle A''B''C''$, the image of $\triangle ABC$ after a reflection in the line x = 2. [3]
- d Graph and state the coordinates of $\triangle A'''B'''C'''$, the image of $\triangle ABC$ under the transformation $G:(x,y) \rightarrow (x+3,y-7)$. [3]
- 41 In $\triangle ABC$, $m \angle B = 38^{\circ}$, $m \angle C = 56^{\circ} 20'$, and a = 12. Find the length of side c to the nearest integer. [10]
- 42 In the accompanying diagram, ABCD is inscribed in circle O, $m\angle COD = 70$, \overrightarrow{AOD} is a diameter, \overrightarrow{PB} is tangent to circle O at B, \overrightarrow{PCOE} is a secant, and $\overrightarrow{mBA} = \overrightarrow{mCD}$.

Find: $a \quad \widehat{mBC} \quad [2]$ $b \quad \widehat{m \angle PBC} \quad [2]$ $c \quad \widehat{m \angle A} \quad [2]$ $d \quad \widehat{m \angle BPE} \quad [2]$ $e \quad \widehat{m \angle AFE} \quad [2]$

