HIGH SCHOOL MATHEMATICS: COURSE III-JANUARY 1982 (1)

Part I

Answer 30 questions from this part. Each correct answer will receive 2 credits. No partial credit will be allowed. Write your answers on a separate sheet. Where applicable, answers may be left in terms of π or in radical form.

- 1. Express 100° in radian measure.
- 2. Solve for x: $\frac{1}{2r} = \frac{1}{r} 2$
- 3. Find the value of sin 750°.
- 4. Evaluate: $\sum_{k=2}^{4} (k^2 1)$

$$3 - \frac{3}{r}$$

- 5. Express in simplest form: $\frac{3 \frac{3}{x}}{x}$
- 6. In triangle ABC, a = 2, b = 10, and $\sin A = \frac{1}{6}$. Find $\sin B$.
- 7. If $\cot A = \frac{3}{4}$ and $\sin A > 0$, find $\sec A$.
- 8. Solve for x in terms of a and b: $\log_b x = a$
- 9. If $f(x) = \sin 2x$, find $f\left(\frac{\pi}{4}\right)$.
- 10. Point P(-1, -5) is reflected over the line y = -x. What are the coordinates of P', the image of P?
- 11. Find the value of sin 65° 23' to four decimal places.
- 12. Chords \overline{AB} and \overline{CD} of circle O intersect at E. If AE = EB = 4 and CE = 8. find ED.
- 13. Express tan (-150°) as a function of a positive acute angle.
- 14. In a circle of radius 6, find the length of the arc intercepted by a central angle of 2 radians.
- 15. Find the numerical value of $8^{\frac{2}{3}} + 4^{\circ}$.
- 16. If the probability of a team's winning is $\frac{2}{3}$ and the probability of losing is $\frac{1}{3}$, what is the probability that the team will win exactly 1 of 4 games?
- 17. What is the period of the graph of $y = \frac{1}{2} \cos 2x$?
- 18. Find the positive value of $\sin \frac{1}{2}x$ if $\cos x = 0.02$.
- 19. A translation maps P(4, -4) onto P'(3, 0). Find the coordinates of Q', the image of Q(3, 2), under the same translation.

Directions (20-35): For each question chosen, write on a separate sheet the numeral preceding the word or expression that best completes the statement or answers the question.

- 20. When $\sqrt{-3}$ is subtracted from $\sqrt{-12}$, the difference is
 - (1) $i\sqrt{3}$ (2) $-i\sqrt{3}$ (3) $3i\sqrt{3}$ (4) $-3i\sqrt{3}$

HIGH SCHOOL MATHEMATICS: COURSE III-JANUARY 1982 (2)

21. The solution set of $3^{2x-1} = 3^{x^2}$ is

22. The square of (2 - 2i) is

(1) $\{1\}$ (2) $\{-1\}$ (3) $\{1,-1\}$ (4) $\{\}$

(1) 0 (2) -8i (3) 4-4i (4) 4 23. If $\theta = \text{Arc } \cos(\frac{1}{2})$, the value of $\sin \theta$ is

(1) $\frac{1}{2}$ (2) $-\frac{1}{2}$ (3) $\frac{\sqrt{3}}{2}$ (4) $-\frac{\sqrt{3}}{2}$

24. If $\log 2 = A$ and $\log 3 = B$, then $\log 6$ is equal to

(1) A + B (2) A - B (3) AB (4) $\frac{A}{B}$

25. The expression $(\tan \theta)(\csc \theta)$ is equivalent to

	(1) $\sin \theta$ (2) $\cos \theta$ (3) $\csc \theta$ (4) $\sec \theta$
26.	All isosceles trapezoids have (1) point symmetry, only (2) line symmetry, only (3) both point and line symmetry (4) neither point nor line symmetry
27.	If $\sin \theta$ and $\tan \theta$ have opposite signs, in which quadrants may angle θ lie? (1) I and II (2) II and III (3) I and III (4) II and IV
28.	Which property is <i>not</i> preserved under a dilation? (1) distance (2) orientation (3) collinearity (4) angle measurement
29.	If $tan (A - 30) = cot A$, the number of degrees in the measure of angle A is (1) 30 (2) 45 (3) 60 (4) 90
30.	What is the domain of the function $f(x) = \sqrt{x-1}$? (1) $\{x x \ge 1\}$ (2) $\{x x \ge 2\}$ (3) $\{x x \le 1\}$ (4) $\{x x \le -2\}$
31.	If l and m are parallel lines, then $r_l \circ r_m \overline{AB}$ is equivalent to a (1) rotation (2) dilation (3) translation (4) glide-reflection
32.	What approximate percentage of the scores of a normal distribution would be expected to fall within two standard deviations from the mean? (1) 2.5% (2) 34% (3) 68% (4) 95%
33.	In the interval $0^{\circ} \le \theta \le 360^{\circ}$, how many values of θ satisfy $\tan^2 \theta - 1 = 0$? (1) 1 (2) 2 (3) 3 (4) 4
34.	In triangle ABC, $a = 2$, $b = 4$, and $m \angle C = 60$. What is the value of c ? (1) $2\sqrt{7}$ (2) 2 (3) $2\sqrt{3}$ (4) $4\sqrt{7}$
35.	The fourth term in the expansion $(a - 3b)^5$ is (1) $270a^2b^3$ (2) $-270a^2b^3$ (3) $90a^2b^3$ (4) $-90a^2b^3$
	Part II
Answer four questions from this part. Show all work unless otherwise directed.	
36.	a. On the same set of axes, sketch the graphs of $y = \tan x$ and $y = \frac{1}{2} \cos x$, as x varies from 0 to 2π radians. [8]

HIGH SCHOOL MATHEMATICS: COURSE III-JANUARY 1982 (3)

b. State the number of values of x in the interval $0 \le x \le 2\pi$ that satisfy the equation

$$\tan x = \frac{1}{2}\cos x. \quad [2]$$

37. a. Find all values of θ in the interval $0^{\circ} \le \theta \le 360^{\circ}$ which satisfy the equation

$$2 \sin^2 \theta - 3 \sin \theta + 1 = 0.$$
 [4]

b. For all values of θ for which the expressions are defined, prove that the following is an identity:

$$\frac{\cos\theta + \cot\theta}{\cos\theta \cot\theta} = \tan\theta + \sec\theta \quad [6]$$

- 38. a. Solve the equation $x^2 2x + 5 = 0$ and express the roots in the form a + bi. [5]
 - b. Using logarithms, solve for x to the nearest tenth.

$$2^x = 5$$
 [5]

39. A high school football team scored the following number of points during the ten-game season:

- a. What is the median? [1]
- b. What is the mean? [2]
- c. Find the standard deviation of these scores to the nearest tenth. [7]
- 40. a. Two sides of a triangular plot measure 30 meters and 18 meters, respectively. If the angle opposite the 30-meter side measures 58°, find, to the nearest degree, the measure of the angle opposite the 18-meter side. [6]
 - b. Using the answer to part a, find the area of the triangle to the nearest square meter.
 [4]
- 41. The coordinates of the endpoints of line segment \overline{AB} are A(4, 1) and B(5, 4).
 - a. Graph \overline{AB} . [2]
 - b. Graph $\overline{A'B'}$, the image of \overline{AB} , after a reflection over the line y = x. [2]
 - c. Graph $\overline{A''B''}$, the image of $\overline{A'B'}$, after the transformation $(x, y) \rightarrow (x 5, y 5)$. [2]
 - d. Graph $\overline{A'''B'''}$, the image of $\overline{A''B''}$, after a reflection through the origin. [2]
 - e. Write a translation which will map $\overline{A'B'}$ onto $\overline{B'''A'''}$. [2]
- 42. In the accompanying figure, quadrilateral ABCD is inscribed in circle O. Diagonals \overline{AC} and \overline{BD} meet at F, and \overline{AD} is a diameter. Chords \overline{AB} and \overline{DC} are extended to meet at E. B is the midpoint of \overline{AC} and m \overline{AB} : m \overline{CD} = 4:1.

Find:

- a. m*CD* [2]
- b. $m \angle BDA$ [2]
- c. m∠*BFC* [2]
- $d. \ \mathsf{m} \angle E \ [2]$
- $e. \ \mathsf{m} \angle \mathit{EBD}$ [2]

