HIGH SCHOOL MATHEMATICS: COURSE I—JUNE 1984 (1)

Part I

Answer 30 questions from this part. Each correct answer will receive 2 credits. No partial credit will be allowed. Write your answers in the spaces provided on the separate answer sheet. Where applicable, answers may be left in terms of π or in radical form.

1. Solve for m: $\frac{m}{4} = \frac{5}{2}$

- 2. Solve for x: 5 + 3(x + 2) = 14
- 3. Find the value of $3x^2y$ if x = -2 and y = 3.
- 4. Jean is making sandwiches for a class picnic. She is using 4 different fillings with 2 different kinds of bread. How many different kinds of sandwiches can she make using one kind of filling on one kind of bread for each sandwich?
- 5. If all seven of the letters of the word "REGENTS" were placed in a hat, what would be the probability of drawing an E at random on the first draw?
- 6. In the accompanying diagram, $\overrightarrow{AB} \parallel \overrightarrow{CD}$, \overrightarrow{HG} intersects \overrightarrow{AB} at E and \overrightarrow{CD} at F. If m/ CFE = 95 and m/ BEF = 3x + 5, find x.

- 7. A student received test scores of 89, 86, 81, 94, and 75. Find the mean score.
- 8. If a card is drawn at random from a standard deck of 52 cards, what is the probability that the card is a red queen?
- The measure of each base angle of an isosceles triangle is 15°. Find the number of degrees in the measure of the vertex angle.
- 10. Solve the following system of equations for x: 4x y = 10x + y = 5
- In the accompanying diagram of circle O, diameters AB and CD intersect at O. If the measure of arc AC is 40°, find the number of degrees in the measure of angle COB.

- 12. Factor: $x^2 + 5x 6$ 13. Solve for x: 0.4x 1.7 = 0.7
- 14. Solve for x: $\frac{x}{3} 2 = 10$
- 15. In the accompanying diagram, triangle ABC is similar to triangle XYZ, with ∠A ≡ ∠X, X ∠B ≅ ∠Y, and ∠C ≅ ∠Z. If AB = 35, XY = 7, BC = 10, and YZ = 2, how many times larger is side AC than side XZ?

HIGH SCHOOL MATHEMATICS: COURSE I—JUNE 1984 (2)

16. In the accompanying diagram, $\triangle ABC$ is a right triangle with the right angle at C. If AB = 10 and BC = 6, find AC.

- 17. Write, in symbolic form, using p and q, the converse of $\sim p \rightarrow \sim q$.
- 18. What is the slope of the graph of the equation y = -x + 1?
- 19. From $3x^2 + x 2$ subtract $x^2 2x + 3$.
- 20. Find the positive root of the equation $x^2 25 = 0$.
- 21. Two complementary angles are in the ratio of 8:1. Find the number of degrees in the measure of the smaller angle.
- 22. In the accompanying diagram, $\angle ACD$ is an exterior angle of triangle ABC. If $m \angle A = 40$ and $m \angle B = 60$, find $m \angle ACD$.

Directions (23-35): For each question chosen, write on the separate answer sheet the numeral preceding the word or expression that best completes the statement or answers the question.

- 23. The statement, "x is odd and x is greater than 2," is true when x equals
 - (1) 1 (2) 2 (3) 3 (4) 4
- 24. Let s represent "You score at least 65," and let p represent "You pass the exam." Which is the symbolic representation of the statement, "If you do not score at least 65, then you do not pass the exam"?

(1)
$$\sim s \land \sim p$$
 (2) $\sim s \rightarrow \sim p$ (3) $s \rightarrow p$ (4) $\sim p \rightarrow \sim s$

- 25. If n represents an odd integer, which represents the next larger consecutive odd integer?
 - (1) n-1 (2) 2n (3) n+2 (4) n+1
- 26. For the set of data, 9, 9, 10, 11, 16, which statement is true?
 - (1) mean > median (2) mean < mode (3) median < mode (4) mean = mode
- 27. What are the coordinates of the y-intercept for the equation y + 3x = 6?
 - (1) (0,6) (2) (0,-6) (3) (0,3) (4) (0,-3)
- 28. The value of 6! is
 - (1) 6 (2) 30 (3) $\frac{1}{6}$ (4) 720
- 29. The circumference of a circle is 20π . What is the area of the circle?
 - (1) 10π (2) 20π (3) 100π (4) 400π
- 30. Given four geometric figures: a square, a rectangle, a trapezoid, and a circle. If one figure is selected at random, what is the probability that the figure has four right angles? (1) $\frac{1}{4}$ (2) $\frac{1}{2}$ (3) $\frac{3}{4}$ (4) 0

HIGH SCHOOL MATHEMATICS: COURSE I—JUNE 1984 (3)

- 31. Which are factors of $15y^2 5y$?
 - (1) 5y 1 and 3y + 5
- (3) 5y and 3y
- (2) 5y and 3y 1
- (4) 5y y and 3y + 5
- 32. A triangle has a base of 12 centimeters and an area of 24 square centimeters. What is the height of the triangle?
 - (1) 6 cm (2) 2 cm (3) 3 cm (4) 4 cm
- 33. Which inequality is equivalent to 2x 1 > 5? (1) x > 6 (2) x > 2 (3) x < 3 (4) x > 3
- 34. The sum of $6\sqrt{6}$ and $\sqrt{54}$ equals (1) $3\sqrt{6}$ (2) $6\sqrt{60}$ (3) $9\sqrt{6}$ (4) $15\sqrt{6}$
- 35. In the truth table below, which is a correct heading for column III?
 - (I) $p \rightarrow q$ (2) $p \leftrightarrow q$ (3) $p \land \sim q$ (4) $\sim p \lor q$

Column I	Column II	Column III
p	q	?
T T F F	T F T F	T F F T

Part II

Answer four questions from this part. Show all work unless otherwise directed.

- 36. Solve the following system of equations graphically and check: $\begin{array}{c}
 x + y = I \\
 2x y = 8
 \end{array}$ [8,2]
- Find the three largest consecutive integers whose sum is less than 86. [Only an algebraic solution will be accepted.] [5,5]
- 38. The frequency histogram below shows the distribution of scores on a math test.

HIGH SCHOOL MATHEMATICS: COURSE I—JUNE 1984 (4)

- a. On your answer paper, copy and complete the table.
- b. How many students took the math test? [2]
- c. How many students scored above 80? [2]
- d. Using the table completed in part a, draw a cumulative frequency histogram. [4]

Scores	Frequency	Cumulative Frequency
51-60 61-70 71-80 81-90 91-100		

- 39. One positive number is 5 more than another. The sum of their squares is 53. Find both numbers. [Only an algebraic solution will be accepted.
- 40. In the accompanying diagram, ABCD is a rectangle and AGE is an isosceles triangle with AG = EG, $\overline{GF} \perp \overline{AD}$. E is the midpoint of \overline{AD} . AF = FE. AB = 8, and AD = 24.

- a. What is the length of \overline{AE} ?
- [2]

[2]

- d. What is the area of triangle AGE?

- b. What is the length of \overline{AF} ? [2]
- e. What is the area of trapezoid ADCG?
- c. What is the length of \overline{AG} ?
- 41. The letters A, E, N, T are written on four individual cards and placed in a container. Each has an equal likelihood of being drawn. One card is drawn from the container, the letter noted, and then the card is returned to the container. A second card is drawn and the letter noted.
 - a. Make a tree diagram or list the sample space showing all possible outcomes after both drawings. [4]

 - b. Find the probability that: (1) both letters drawn are the same [2]
 - (2) the first letter drawn is A and the second letter is T
 - (3) for both drawings the letter N does not appear
- 42. a. On your answer paper, copy and complete the truth table for the statement

$$[(p \rightarrow q) \land \sim p] \rightarrow \sim q. \quad [8]$$

p	q	$p \rightarrow q$	~p	~ q	$(p \to q) \land \sim p$	$[(p \to q) \land \sim p] \to \sim q$
T	Т					
Т	F					
F	Т					
F	F					

- b. Using your results from part a, is $[(p \rightarrow q) \land \sim p] \rightarrow \sim q$ a tautology? [1]
- c. Justify the answer you gave in part b. [1]