The University of the State of New York

EXAMINATION FOR QUALIFYING CERTIFICATES

PLANE TRIGONOMETRY

Thursday, June 17, 1920-1.15 to 4.15 p. m., only

Answer six questions. Papers entitled to less than 75 credits will not be accepted.

- 1 a If $\tan A = \frac{a}{a+1}$ and $\tan B = \frac{1}{2a+1}$ prove that $\tan (A+B)=1$
 - b Solve the equation $2 \cos^2 A = 1 \sin A$ for all values of A from 0° to 360° . Check the largest angle found.
- 2 Prove the identity $\frac{\cos 2x}{1+\sin 2x} = \frac{\cot x 1}{\cot x + 1}$
- 3 a Without the use of tables, find the value of sin 15°, leaving the answer in radical form.
 - b By the use of logarithms find the value of

$$\frac{0.076 \times \sqrt[3]{57.46}}{(2.34)^{2}}$$

4 If the angle A lies between 180° and 270° and $\tan A = \frac{5}{12}$, (a) find sin A and cos A, (b) using values found in the answer to (a) find sin 2A and cos $\frac{A}{2}$

5 a Show that
$$\frac{\sin 2A - \sin A}{\cos A - \cos 2A} = \cot \frac{3A}{2}$$
b Solve for x:
$$7^{2x+3} = 43$$

6 In each of the following triangles state the number of solutions and show in full on your paper the reason for your conclusion in each case:

(1)
$$b = 75.3$$
 $a = 49.7$ $A = 40^{\circ}$
(2) $a = 67.4$ $b = 97.6$ $c = 30.2$
(3) $c = 156.3$ $b = 104.8$ $B = 142^{\circ}$
(4) $a = 56.7$ $b = 38.4$ $A = 58^{\circ}$ 20'
(5) $a = 18.0$ $c = 9.0$ $C = 30^{\circ}$

7 From the top of a lighthouse 257 feet above the sea, the angles of depression to two boats, in line with the lighthouse, are observed to be 14° and 32° respectively; find the distance between the two boats.

PLANE TRIGONOMETRY - concluded

8 Given a=71.2, b=64.8, c=37; find all the angles of the triangle.

9 The longer diagonal of a parallelogram is 500 feet and the angles it makes with the sides are 46° 36′ and 10° 12′; find the lengths of the sides and the area of the parallelogram.