University of the State of New York
Examinations Department
79th examination
PLANE TRIGONOMETRY

Thursday, Jan. 28, 1892—9:15 a.m. to 12:15 p.m., only

48 credits, necessary to pass, 36

Note.—Draw carefully and neatly each figure, using letters instead of numerals. Arrange work logically.

1. Define and illustrate (a) negative angle; (b) angle of depression; (c) system of logarithms.

2. Mention (a) each function of the angle of a triangle which determines whether the angle be greater or less than 90°; (b) each function which fails to do so.

3. Find \(\sin A, \tan A \) and \(\cos A \) when \(a \), the side opposite \(A \) in a right triangle, equals two-thirds of \(c \) the hypotenuse. Also find \(b \) if \(\cot A = 3 \) and \(a = 12 \).

4. Find (a) the complement of \(-40°\); (b) \(\tan (-20°) \) in terms of \(+20° \); (c) \(\cos A \) and \(\tan A \) in terms of \(\sin A \).

5. Find the value of the trigonometric functions of 60°.

6. Show that (a) \(\cos (270° - A) = -\sin A \).

 (b) \(\sin (180° - A) = + \sin A \).

7. If \(A, B \) and \(C \) represent the angles of an oblique triangle and \(a, b \) and \(c \) their opposite sides respectively, prove that

 (a) \(a = b \cos C + c \cos B \).

 (b) \(b^2 = a^2 + c^2 - 2ac \cos B \).

8. In a parallelogram, given \(d \) a diagonal, and \(A \) and \(B \) the angles which this diagonal makes with the sides; find, in terms of \(d, A \) and \(B \), the sides \(a \) and \(b \), and the area \(S \) of the parallelogram.

9. Let \(A \) represent the angle of elevation of \(C \), the top of an inaccessible hill observed from a point \(M \) on a plain, \(a \) the distance from \(M \) to \(N \) on a line \(MN \) perpendicular to \(MC \), and \(B \) the angle \(MNC \). Find \(h \) the height of the hill and \(d \) the distance from \(M \) to a point directly under \(C \).