PLANE TRIGONOMETRY—concluded

6 a Evaluate (without the use of tables):
 \[\frac{\cos 60^\circ + \cot 225^\circ + \sin 270^\circ}{\sec (-60^\circ) - \tan 180^\circ + \sin 210^\circ} \]

 \[7 \]

b Express \(\tan x \) and \(\sec x \) in terms of \(\sin x \).

 \[6 \]

Group III

Answer three questions from this group.

7 A tree is broken by the wind; its top strikes the ground 32 feet from the foot of the tree and makes an angle of \(35^\circ 54' \) with the ground. Find the original height of the tree.

 \[16 \]

8 The sides of a triangle are 18.723, 28.14 and 35.817; find the length of the perpendicular from the largest angle upon the opposite side.

 \[16 \]

9 Two forces, 125.0 lb and \(F \) lb, include an angle of \(72^\circ 15' \) between their directions; if their resultant force makes an angle of \(31^\circ 8' \) with the 125.0 lb force, find \(F \). The resultant is represented by the longer diagonal of the parallelogram whose sides are 125.0 and \(F \), the included angle being \(72^\circ 15' \).

 \[16 \]

10 At two stations on the same horizontal plane the height of a kite subtends the same angle \(A \). The angle which the line joining one station and the kite subtends at the other station is \(B \); the distance between the two stations is \(a \). Show that the height of the kite is \(\frac{1}{2} a \sin A \sec B \).

 \[16 \]