The University of the State of New York

295th High School Examination

PLANE GEOMETRY

Thursday, August 23, $1945-8.30$ to 11.30 a. m., only

Instructions

Part I is to be done first and the maximum time allowed for it is one and one half hours. At the end of that time, this part of the examination must be detached and will be collected by the teacher. If you finish part I before the signal to stop is given, you may begin part II.

Write at top of first page of answer paper to parts II, III and IV (a) names of schools where you have studied, (b) number of weeks and recitations a week in plane geometry previous to entering summer high school, (c) number of recitations in this subject attended in summer high school of 1945 or number and length in minutes of lessons taken in the summer of 1945 under a tutor licensed in the subject and supervised by the principal of the school you last attended, (d) author of textbook used.

The minimum time requirement is five recitations a week for a school year. The summer school session will be considered the equivalent of one semester's work during the regular session or five recitations a week for half a school year.

For those pupils who have met the time requirement the minimum passing mark is 65 credits; for all others 75 credits.

For admission to this examination attendance on at least 30 recitations in this subject in a registered summer high school in 1945 or an equivalent program of tutoring approved in advance by the Department is required.

Part II
Answer two questions from part II.
26 Prove that tangents drawn to a circle from an external point are equal. [10]
27 Quadrilateral $A B C D$ is inscribed in a circle. Diagonals $A C$ and $B D$ intersect in E and $B E=C E$. Prove that chord $A B=$ chord $C D$. [10]

28 Prove that if two triangles have an angle of one equal to an angle of the other and the sides including these angles proportional, the triangles are similar. [10]

Part III
Answer two questions from part III.
29 Equal chords $A B$ and $C D$ of a circle are extended through B and D to meet in P. $A D$ and $B C$ intersect in E and $A C$ is drawn. Angle $P=18^{\circ}$ and arc $A C=60^{\circ}$. Find arc $B D$, angle $B C D$, angle $A E C$ and angle $A C B . \quad[3,2,2,3]$
$30 C D$ is the altitude on the hypotenuse of right triangle $A B C . A B=25$ and $A C=20$. Find segment $B D$, altitude $C D$ and angle B correct to the nearest degree. $\quad[3,2,5]$

Plane Geometry

31 A circle and an equilateral triangle each have a perimeter of 132 feet.
a Find a side of the triangle. [1]
b Find the radius of the circle. [Use $\pi=\frac{22}{7}$] [2]
c Show that the difference between the area of the circle and the area of the triangle is approximately 549 square feet. [7]

Part IV
Answer one question from part IV.
$32 a$ Let $A B C$ be an acute triangle with $A B=12, A C=9$ and altitude $C D$ drawn.
(1) Express $C D$ in terms of a trigonometric function of angle A. [3]
(2) Express K, the area of the triangle, in terms of a trigonometric function of angle A. [2]
b Let $A B C$ be any triangle with $A B=12, A C=9$ and altitude $C D$ drawn.
(1) As angle A increases from 0° to 180°, what change takes place in the length of side $B C$? [2]
(2) As angle A increases from 0° to 90° and then from 90° to 180°, what change takes place in the length of altitude $C D$? [3]

33 A shore defense gun is located at point A on a stretch of straight coast line. From a port $B, 26$ miles farther up the coast and out of range of the gun, a boat started out on a straight line course at 20 mph . When it had traveled for 9 minutes, it came within range of the gun and 42 minutes later it passed out of range of the gun.
a How far had the boat gone when it first came within range of the gun?
b For how many miles was the boat within range of the gun? [1]
c How far was the boat from the gun at the nearest point? [6]
d What was the range of the gun? [2]

Plane Geometry
 Fill in the following lines:

Name of school
Name of pupil.

Part I

Answer all questions in this part. Each correct answer will receive 2 credits. No partial credit will be allowed. Each answer must be reduced to its simplest form.

1 In triangle $A B C, A B=8, B C=10$ and $A C=14$. Name the largest angle.

2 An exterior angle at the base of an isosceles triangle is 110°. How many degrees are there in the vertex angle of the triangle?

3 A transversal cuts two parallel lines $A B$ and $C D$ at E and F, respectively, and the bisector of angle $A E F$ meets $C D$ in P. If angle $A E F=64^{\circ}$, find the number of degrees in angle $E P F$.

4 In circle O, angle $A B C$, formed by diameter $A B$ and chord $B C$, is equal to 60°. If the diameter of the circle is 10 , find chord $A C$. [Answer may be left in radical form.]

5 Find the side of an equilateral triangle whose altitude is $\sqrt{3}$.
\qquad
\qquad
\qquad
4.
5.
6...................

7 From point P outside a circle, tangent $P D$ and secant $P C A$ are drawn. $P D=8$ and the secant is four times its external segment. Find the external segment of the secant. \qquad
8 The area of a rhombus is 135 and one diagonal is 18 . Find the other diagonal.

9 The bases of a trapezoid are 2.4 inches and 5.6 inches and its altitude is 7.0 inches. Find the number of square inches in the area of the trapezoid.

10 Find the number of degrees in the angle of a sector if its area is 5π and the radius of the circle is 6 .

11 Find the sum of the angles of a polygon of 8 sides.
12 If the radius of the circle inscribed in a regular polygon is 6 , what is the apothem of the polygon?

13 What is the locus of the midpoints of all chords of a given length in a given circle?

13
14 The sides of two regular hexagons are in the ratio of $1: 3$. What is the ratio of the areas of the two hexagons?

14
15 A doorway is 3 feet wide and 7 feet high. Can a circular table top 8 feet in diameter be taken through the doorway? [Answer yes or no.]
15.

Directions (questions 16-23) - If the blank in each statement is replaced by one of the words always, sometimes or never, the resulting statement will be true. Select the word that will correctly complete each statement and write this word on the line at the right.

16 If the diagonals of a quadrilateral bisect each other, the figure is . a parallelogram.

16
17 A median of a triangle ... divides the triangle into two equal triangles.

18 Chord $A B$ of circle O passes through the midpoints of two parallel chords. $A B$ is \ldots a diameter of the circle.
18.

19 Two externally tangent circles ... have three common tangents.

Plane Geometry

20 A parallelogram inscribed in a circle ... has two of its angles acute.
20..................

21 A triangle can ... be constructed by using as the three sides the lengths of the diameter and two radii of the same circle.

22 Two rectangles of equal area ... have unequal perimeters.
23 Side $A B$ of triangle $A B C$ is 16 and a line segment cuts the sides $A C$ and $B C$ in D and E, respectively. If $D E$ equals 8 , then $D E$ is \ldots parallel to $A B$.

21
22.

23

Directions (questions 24-25) - Leave all construction lines on the paper.

24 Find the center of the circle that can be circumscribed about triangle $A B C$.

25 Draw an obtuse angle on your paper and construct the locus of points within the angle equidistant from its sides.

