The University of the State of New York
 270 th High School Examination

PLANE GEOMETRY
Tuesday, August 24, $1937-8.30$ to 11.30 a. m., only

Instructions

Do not open this sheet until the signal is given.

Group I

This group is to be done first and the maximum time allowed for it is one and one half hours.
If you finish group I before the signal to stop is given you may begin group II. However, it is advisable to look your work over carefully before proceeding, since no credit will be given any answer in group I which is not correct and in its simplest form.

When the signal to stop is given at the close of the one and one half hour period, work on group I must cease and this sheet of the question paper must be detached. The sheets will then be collected and you should continue with the remainder of the examination.

Groups II and III

Write at top of first page of answer paper to groups II and III (a) names of schools where you have studied, (b) number of weeks and recitations a week in plane geometry previous to entering summer high school, (c) number of recitations in this subject attended in summer high school of 1937, (d) author of textbook used.

The minimum time requirement is five recitations a week for a school year. The summer school session will be considered the equivalent of one semester's work during the regular session or five recitations a week for half a school year.

For those pupils who have met the time requirement the minimum passing mark is 65 credits; for all others 75 credits.

For admission to this examination attendance on at least 30 recitations in this subject in a registered summer high school in 1937 is required.

Plane Geometry

See instructions for groups II and III on page 1.
 Group II

Answer three questions from this group.
21 Prove that if one angle of a triangle is greater than a second angle, the side opposite the first angle is greater than the side opposite the second angle. [10]

22 Prove that the area of a regular polygon is equal to one half the product of its perimeter and its apothem. [10]
$23 A B C D$ is a parallelogram with side $B C$ extended through C to any point $E . A E$ is drawn, intersecting $D C$ in F.

$$
\begin{equation*}
\text { Prove } C F: F D=C E: B C \tag{10}
\end{equation*}
$$

24 In the figure at the right, the leg $A B$ of right triangle $A B C$ is the diameter of circle O. At D, the point where the circle cuts the hypotenuse, a tangent $F E$ is drawn, meeting the leg $A C$ at $E . A D$ is drawn. Then angle $E D C$ is equal to angle C.

Below is a possible proof for this exercise. Give a reason for each of the following statements:

$\angle B D F$ is measured by $\frac{1}{2} \operatorname{arc} B D$
$\angle B A D$ is measured by $\frac{1}{2} \operatorname{arc} B D$
$\angle B D F=\angle B A D$
$\angle B D F=\angle E D C$
$\angle B A D=\angle E D C$
$\angle B D A$ is a right angle
$\angle B A C$ is a right angle
$\angle B A D=\angle C$
$\angle E D C=\angle C$

25 In triangle $A B C$, the medians $B E$ and $C D$ intersect in O. Prove that triangles $B D O$ and $C E O$ are equal in area. [10] [Suggestion: Draw DE.]

Group III

Answer two questions from this group.

$26 P$ is a point outside a circle whose center is O and the line $O P$ is 29 inches long. From P a tangent is drawn, touching the circle at B and forming an angle of 43° with $O P$.
a Find the radius of the circle correct to the nearest inch. [5]
b Find the length of the tangent.
[5]
27 In a circle whose center in O and whose radius is 6 inches, a chord $A B$ is drawn. The radii $O A$ and $O B$ form an angle of 60° with each other.
a Find the area of triangle $A O B$. [5]
b Find, correct to the nearest tenth of a square inch, the area of the minor segment cut off by the chord $A B$. [5]
[Use $\pi=3.14$ and $\sqrt{3}=1.73$]
$28 A B C D$ is a trapezoid with bases $A B$ and $D C$. Diagonals $A C$ and $B D$ intersect in 0 . $A B$ equals $20, D C$ equals 4 and the area of the trapezoid is 72 .
a Find the altitude of the trapezoid.
[4]
b Find the length of the perpendicular drawn from O to $A B$.

Plane Geometry
Fill in the following lines:

Name of school \qquad Name of pupil \qquad
Detach this sheet and hand it in at the close of the one and one half hour period.

Group I

Answer all questions in this group. Each correct answer will receive $2 \frac{1}{2}$ crodits. No partial credit will be allowed. Each answer must be reduced to its simplest form.

Directions (questions 1-8) - Write on the dotted line at the right of each question the expression which when inserted in the corresponding blank will make the statement true. No work need be shown.

1 If the altitucle of an equilateral triangle is $9 \sqrt{3}$, the length of one side is
.... \qquad
2 Point P is 6 inches from the center of a circle whose radius is 10 inches. The numerical value of the product of the segments of any chord drawn through P is.... \qquad
3 The altitude on the hypotenuse of a right triangle is 4 . The segments of the hypotenuse made by this altitude are 2 and \qquad
4 Two parallel lines are cut by a transversal. If one of the two interior angles on the same side of the transversal is three times the other, the number of degrees in the smaller angle is \qquad
Ans.

Ans. \qquad

5 Corresponding bases of two similar triangles are 2 and 3 . If the area of the first triangle is 12 , the area of the second is \qquad
Ans. \qquad

Ans \qquad
6 Angle A of parallelogram $A B C D$ is 45° and the altitude on the base $A B$ is represented by h; then the side $A D$ expressed in terms of h is

7 The radius of a certain circle is 12 . A central angle of 90° intercepts an arc whose length in terms of π is. \qquad
8 The area of a rhombus whose diagonals are 6 and 12 is
Ans
Ans.
Ans. \qquad
\square
\qquad
\qquad
\qquad
Directions (questions 9-13) - Indicate the cerrect answer to each of the following questions by writing on the dotted line at the right the letter $(a),(b)$ or (c) :

9 The locus of points at a given distance from a given straight line is (a) a circle, (b) a parallel line or (c) two parallel lines.

Ans.
10 The medians of a triangle meet in a point which is $(a) \frac{1}{3},(b) \frac{2}{3}$ or (c) $\frac{1}{2}$ the distance from each vertex to the mid-point of the opposite side.

Ans.
11 In proving that the opposite sides of a parallelogram are equal, a diagonal is drawn. The triangles thus formed can be proved congruent by (a) SAS, (b) SSS or (c) ASA.

12 If the altitude of a triangle is doubled and the base remains constant, the area of the triangle is (a) doubled, (b) halved or (c) multiplied by 4.

13 A central angle and an inscribed angle intercept the same arc. The central angle is (a) equal to, (b) less than or (c) greater than the inscribed angle.

Directions (questions 14-17) - Indicate whether each of the following statements is alzoys true, sometimes true or never true by writing the word always, sometimes or never on the dotted line at the right.

14 A circle can be circumscribed about any regular polygon.
Ans.
15 Two of the exterior angles of a right triangle may be acute angles.
Ans
16 The sum of two angles of a triangle is greater than the third angle.
Ans
17 A line perpendicular to a chord bisects the chord and its arc.
Ans
Directions (questions 18-20) - Leave all construction lines on the paper.

18 Construct the locus of the centers of all circles lying above line m and tangent to m at point P.

19 Construct the mean proportional between the given line segments a and b.

20. On line $D E$ corresponding to side $A B$, construct a triangle similar to triangle $A B C$.

