The University of the State of New York
 323d High School Examination

PLANE GEOMETRY

Monday, January 24, 1955 - 9.15 a.m. to 12.15 p.m., only

Instructions

Part I is to be done first and the maximum time allowed for it is one and one half hours. At the end of that time, this part of the examination must be detached and will be collected by the teacher. If you finish part I before the signal to stop is given, you may begin part II.

Write at top of first page of answer paper to parts II and III (a) name of school where you have studied, (b) number of weeks and recitations a week in plane geometry, (c) author of textbook used.

The minimum time requirement is four or five recitations a week for a school year.

Part II

Answer three questions from this part.
26 Prove: If the opposite sides of a quadrilateral are equal, the quadrilateral is a parallelogram. [10]
$27 a$ Prove: An angle inscribed in a circle is measured by one half its intercepted arc. [Prove only the case in which one side of the angle is a diameter of the circle.] [8]
b Tell which of the following axioms is used to prove this theorem for the case in which the center of the circle lies outside the angle:
(1) If equals are added to equals, the sums are equal.
(2) If equals are subtracted from equals, the remainders are equal.

28 In the accompanying figure unequal circles O and O^{\prime} intersect at P. Chord $P R$ is tangent to circle O^{\prime} and chord $P Q$ is tangent to circle O. Radii $O P, O R, O^{\prime} P$, and $O^{\prime} Q$ are drawn.
a Prove that
(1) angle $O P R=$ angle $O^{\prime} P Q$
(2) triangles $O P R$ and $O^{\prime} P Q$ are similar [3]
b If the ratio of chord $P R$ to chord $P Q$ is $a: b$, find the ratio of the area of circle O to the area of circle O^{\prime}. [2]

29 Two chords $A B$ and $C D$ of a circle whose center is O are equal and parallel. A line through O perpendicular to $A B$ intersects $A B$ at P and $C D$ at M. Diameter $R S$ of the circle intersects $A B$ at H and $C D$ at K. Prove that:

$$
\begin{array}{ll}
a & \text { triangles } H O P \text { and } K O M \text { are congruent } \\
b & H S=K R
\end{array}
$$

30 Perpendicular lines r and s intersect at O, and P is a point on r.
a State in full the locus of points which are
(1) at a given distance k from P
[3]
(2) equidistant from r and s
[3]
b Find the number of points satisfying both conditions given in a if
(1) $O P=6$ and $k=8$
[1]
(2) $O P=6$ and $k=3 \sqrt{2}$
(3) $O P=6$ and $k=3$

Part III

Answer two questions from this part. Show all work.

$31 a$ The shorter base of an isosceles trapezoid is 17 , its altitude is 8 and one of its angles is 45°. Find the area of the trapezoid. [4]
b Base $A D$ of parallelogram $A B C D$ is represented by x. If angle A is 30°, and if side $A B$ is 10 , express the area of the parallelogram is terms of x.
[4]
c If the trapezoid and the parallelogram are equal in area, find x. [2]
32 In rhombus $A B C D$ diagonal $A C$ is drawn. If $A C=20$ and angle $B A C=27^{\circ}$, find
a diagonal $B D$ to the nearest tenth.
[4]
b the area of the rhombus to the nearest integer
c side $A B$ to the nearest integer
33 A plot of land has the form of a quadrilateral whose sides are 9 rods, 17 rods, 8 rods, and 12 rods as indicated on the accompanying figure. Angle $B A D$ equals 90°.
a Find the length of diagonal $B D$.
b Show that angle $B D C$ is a right angle. [2]
c Find to the nearest tenth of an acre the area of the field. $\quad[1$ acre $=160$ sq. rd.] [6]

$34 A B$ is a diameter of a circle whose center is O. $O C$ is a radius perpendicular to $A B . K$ is a point on radius $O B$. Line $C K$ is drawn and extended to meet the circle at D. At D a tangent is drawn to the circle and meets $A B$ extended at P.
a Draw and letter a figure which represents the conditions given above.
[2]
b If the number of degrees in arc $D B$ is represented by $2 x$, show that angle $C D P$ and angle $D K B$ are equal. [4]
c If $A P=18$ and $K P=12$, find the radius of the circle.

Plane Geometry

Fill in the following lines:
Name of pupil.
Name of school \qquad

Part I

Answer all questions in this part. Each correct answer will receive 2 credits. No partial credit will be allowed.

Directions (1-4): Write on the line at the right of each question the expression that, when inserted in the blank, will make the statement true.

1 If two parallel lines are cut by a transversal, the two interior angles on the same side of the transversal are

2 If line a is perpendicular to line b and line b is parallel to line c, then a is ... to c.

3 The angle formed by two secants intersecting outside the circle is measured by one half the ... of the intercepted arcs.

4 The areas of two parallelograms which have equal bases are to each other as their
\qquad
2 \qquad

3 \qquad

4 \qquad
Directions (5-12): Write on the line at the right the correct answer to each numerical exercise.

5 The line segment joining the midpoints of two sides of an equilateral triangle is 5 . Find the perimeter of the triangle.

6 Two polygons are similar and the area of one is 9 times the area of the other. If a side of the smaller polygon is 5 , find the corresponding side of the larger polygon.
$7 A B$ is the hypotenuse of right triangle $A B C$ and $C D$ is the altitude on the hypotenuse. If $A D=2$ and $C D=8$, find $D B$.

8 Two chords, $A B$ and $C D$, of a circle intersect at P. If $A P=2$, $P B=16$, and $C P=4$, find $P D$.
5. \qquad
6. \qquad
\qquad

9 A line parallel to base $A B$ of triangle $C A B$ intersects side $A C$ at H and side $B C$ at K. If $A H=15, H C=6$, and $B K=10$, find $K C$.
9.
8. \qquad

10 Find the length of an arc whose central angle is 10° in a circle whose radius is 9 inches. [Answer may be left in terms of π.]

11 Find the area of a circle whose radius is 7. [Answer may be left in terms of π.]

11
12 In triangle $A B C$, angle $C=90^{\circ}$, side $A B=100$, and side $B C=89$. Find angle A to the nearest degree.

12

Directions (13-16) : For each of the following, if the statement is always true, write the word true on the line at the right; if it is not always true, or never true, write the word false.

13 If the diagonals of a quadrilateral are equal, the quadrilateral is a rectangle.

13
14

15

16

Plane Geometry

Directions (17-21): Indicate the correct completion for each of the following by writing on the line at the right the letter a, b or c.

17 The center of a circle inscribed in a triangle is the point of intersection of (a) the bisectors of its angles (b) its altitudes (c)the perpendicular bisectors of its sides \qquad
18 If each interior angle of a regular polygon is 140°, the number of sides of the polygon is (a)seven (b) eight (c)nine \qquad
19 A median of a triangle divides the triangle into two triangles which are always
(a) similar
(b) equal in area
(c) congruent

19
20 If in triangle $A B C$, angle $A=50^{\circ}$ and angle $B=64^{\circ}$, the longest side of the triangle is
(a) $A B$
(b) $A C$
(c) $B C$
20.

21 The area of an equilateral triangle whose side is 8 is (a) $16 \sqrt{3}$ $\begin{array}{ll}\text { (b) } 4 \sqrt{3} & \text { (c) } 16 \sqrt{2}\end{array}$

22 Is statement b the converse of statement a ? [Answer yes or no.] a If the diagonals of a trapezoid are equal, the trapezoid is isosceles. b The diagonals of an isosceles trapezoid are equal.

22
23 If a rhombus is defined as a parallelogram in which two adjacent sides are equal, does it follow from this definition that a square is a rhombus? [Answer yes or no.]

23

Directions (24-25): Leave all construction lines on your paper.

24 Divide side $A B$ of triangle $A B C$ into two parts which are in the ratio $A C: C B$

25 Given point P on line m. Construct the locus of the centers of circles tangent to line m at point P.

FORTEACHERS ONLY

 INSTRUCTIONS FOR RATING

 INSTRUCTIONS FOR RATING PLANE GEOMETRY

 PLANE GEOMETRY}

Monday, January 24, 1955 - 9.15 a.m. to 12.15 p.m., only
Use only red ink or pencil in rating Regents papers. Do not attempt to correct the pupil's work by making insertions or changes of any kind. Use check marks to indicate pupil errors.

Unless otherwise specified, mathematically correct variations in the answers will be allowed. Units need not be given when the wording of the questions allows such omissions.

Part I
Allow 2 credits for each correct answer; allow no partial credit. For questions 17-21, allow credit if the pupil has written the correct answer instead of the letter a, b or c.
(1) supplementary
(12) 63 or 63°
(2) perpendicular
(13) false
(3) difference
(14) true
(4) altitudes
(15) true
(5) 30
(6) 15
(16) false
(7) 32
(17) a
(8) 8
(9) 4
(18) c
(10) $\frac{\pi}{2}$ inches
(20) a
(21) a
(11) 49π
(22) yes
(23) yes

