NINTH YEAR MATHEMATICS

August 14, 1985

Part I

Answer all questions in this part. Each correct answer will receive 2 credits. No partial credit will be allowed. Write your answers in the spaces provided on the answer sheet.

1. The distance between two towns is 50 miles. On a map, these towns are 2 inches apart. Find the distance, in miles, between two other towns that are 3 inches apart on the map.

Solve for *a*: 6(a - 4) = 12

2_____

3. If $3x + 2 \le 17$, find the largest value for x.

3

If less than twice a number is 21, find the number.

4_____ 5

Find the value of $(a^2b)^2$ when a=2 and b=3. Express as a trinomial: (2a - 3)(3a + 2)

6_____

7_____

7. Solve for $n: \frac{3n}{2} - 5 = 10$

Express as a single fraction in simplest form: $\frac{x}{3} - \frac{x}{4}$

10. Solve the following system of equations for x:

Solve for x in terms of a, b, and c: ax + b = c

 $2x + y = 7 \\
x + y = 5$

Factor: $x^2 - 2x - 3$

10_____ 11_____

12. If $\cos x = .5530$, find the measure of angle x to the nearest degree.

12

13. Find the value of $\sqrt{39}$ to the nearest tenth.

13_____

14. Solve for $x: \frac{x}{6} = \frac{x-2}{5}$

14____

Solve for x: 0.2x - 1 = 0.8

15....

16. The lengths of the legs of a right triangle are 5 and 12. Find the length of the hypotenuse.

16____

17. A line segment 28 centimeters in length is divided into two segments which are in the ratio 3:1. Find the number of centimeters in the length of the longer segment.

17___

Directions (18-30): Write in the space provided on the answer sheet the numeral preceding the expression that best completes each statement or answers each question.

18. The product of two binomials is $x^2 - 25$. If one of the binomials is x - 5, what is the other binomial? 18 (1) x + 5 (2) x - 5 (3) 5 - x (4) 5x + 5The multiplicative inverse of 5/7 is (2) -5/719 (3) -7/5(4) 7/5(1) 120. The product $5x^3y$ and $6x^3y$ is (1) $11x^3v$ (2) $30x^3v$ (3) $30x^6v^2$ (4) $30x^9v$ 20___ 21. An allustration of the commutative property of addition is (2) a + b = b + a(4) a(b + c) = ab + ac(1) a + (-a) = 0(3) a + (b + c) = (a + b) + c21____ 22. The value of |2| + |-2| is (1) 0 (2) 2 (3) -4 (4) 4 22___ -18a6b4— is equivalent to The expression — $6a^{2}b^{2}$ $(1) -3a^4b^2$ (2) $-3a^3b^2$ (3) $3a^4b^2$ (4) $12a^4b^2$ 23____ 24. If a + 6 represents an odd integer, the next larger odd integer 24 is represented by (1) a + 4 (2) a + 8 (3) 2a + 6 (4) a + 725. The solution set of the equation $x^2 + 5x + 6 = 0$ is (1) $\{-6,1\}$ (2) $\{6,-1\}$ (3) $\{-3,-2\}$ (4) $\{3,2\}$ 25 26. Which point lies on the graph of 3x - y = 11? (3) (6,-7) (4) (4,1)(1) (5,-4)26 (2) (2,5)27. The sum of $3\sqrt{2}$ and $\sqrt{18}$ is equivalent to (1) $9\sqrt{2}$ (2) 18 (3) $6\sqrt{2}$ (4) 36 27____ 28. An equation of a line parallel to the y-axis and 3 units to the left of the y-axis is (1) y = 3 (2) y = -3 (3) x = 3 (4) x = -328 29. The area of a square is 25. The perimeter of the square is (1) 10 (2) 20 (3) 25 (4) 100 29

30. The result of subtracting $-4x^2 - 2x + 7$ from

(2) $10x^2 + x + 11$ (3) $2x^2 - 5x + 3$ (4) $2x^2 + x + 11$

 $-6x^2 + 3x + 4$ is

 $(1) -2x^2 + 5x - 3$

30_

Part II

Answer four questions from this part. Show all work unless otherwise directed. [40]

31. Answer a or b but not both.

a On the same set of coordinate axes, graph the following system of inequalities and label the solution set S.

$$3y < 2x + 12$$

 $4x + y < -1$ [8,2]

b Solve graphically and check:

$$2x + y = 2
x - 2y = 6$$
[8, 2]

32. Answer both a and b.

a Solve for y:
$$\frac{2y^2 - 3}{y} = 2y + 1$$
 [4]

b Perform the indicated operation and express the result in lowest terms:

$$\frac{x^2 - 3x}{4x^2} \div \frac{x^2 - 9}{8x}$$
 [6]

- 33. The length of a rectangle is 5 meters greater than its width. If the length and width are each increased by 3 meters, the area of the resulting rectangle is 50 square meters. Find the dimensions, in meters, of the original rectangle. [Only an algebraic solution will be accepted.] [5,5]
- 34. A runner training for the Olymbpics ran on a country road at the rate of 8 miles per hour. When he twisted his ankle, he had to turn around and walk back along the same road at a rate of 2 miles per hour. If the entire trip took 5 hours, how far did he run before he twisted his ankle? [Only an algebraic solution will be accepted.] [5, 5]
- 35. Pecans cost 50 cents more per pound than walnuts. If Mr. Martin paid \$7.75 for 3 pounds of walnuts and 2 pounds of pecans, find the price per pound of each. [Only an algebraic solution will be accepted.] [5, 5]

36. The accompanying diagram shows a shelf that is 8 inches wide. The shelf is mounted with a perpendicular bracket and supported by a chain. The length of the bracket is 5 inches.

a Find the measure of angle A to the nearest degree. [5]

b Find the length of support chain AB to the nearest tenth of an inch. [5]

37. The replacement set for x for each of the open sentences below is $\{-1,0,1,2\}$. On your answer paper, next to each letter write the solution set of the open sentence. [Each answer must be as ubset of the replacement set.] [10]

a	2x = 3x + 1	a
b	$3x \leq x$	b
c	x = 1	c
d	6x - 10 > x	d
e	$2x^2 = 2$	e