Math B Regents Exam 0602 www.jmap.org

1. 060201b, P.I. A2.N.10

What is the value of $\sum_{m=2}^{5} (m^2 - 1)$? [A] 58 [B] 50 [C] 54 [D] 53

2. 060202b, P.I. A.A.16 For all values of *x* for which the expression is

defined, $\frac{2x + x^2}{x^2 + 5x + 6}$ is equivalent to

[A]
$$\frac{1}{x+2}$$
 [B] $\frac{x}{x+2}$
[C] $\frac{1}{x+3}$ [D] $\frac{x}{x+3}$

3. 060203b, P.I. G.G.53

In the accompanying diagram, the length of

$$\widehat{ABC}$$
 is $\frac{3\pi}{2}$ radians.

(Not drawn to scale)

What is $m \angle ABC$?

[A] 36	[B] 45	[C] 72	[D] 53

4. 060204b, P.I. G.G.28

In the accompanying diagram of ΔABC ,

$$\overline{AB} \cong \overline{AC}, \ \overline{BD} = \frac{1}{3}\overline{BA}, \text{ and } \overline{CE} = \frac{1}{3}\overline{CA}.$$

Triangle *EBC* can be proved congruent to triangle *DCB* by

$[A] HL \cong HL$	$[B] SAS \cong SAS$
[C] ASA ≅ ASA	$[D] SSS \cong SSS$

5. 060205b, P.I. A2.A.22

The path of a rocket is represented by the equation $y = \sqrt{25 - x^2}$. The path of a missile designed to intersect the path of the rocket is represented by the equation $x = \frac{3}{2}\sqrt{y}$. The value of x at the point of intersection is 3.

What is the corresponding value of *y*?

[A] -4 [B] 2 [C] -2 [D] 4

6. 060206b, P.I. A2.S.5

On a standardized test, the distribution of scores is normal, the mean of the scores is 75. and the standard deviation is 5.8. If a student scored 83, the student's score ranks

- [A] between the 75th percentile and the 84th percentile
- [B] below the 75th percentile
- [C] between the 84th percentile and the 97th percentile
- [D] above the 97th percentile

Math B Regents Exam 0602 www.jmap.org

7. 060207ь

Which statement is true for all real number values of *x*?

[A]
$$|x - 1| > 0$$
 [B] $\sqrt{x^2} = |x|$
[C] $\sqrt{x^2} = x$ [D] $|x - 1| > (x - 1)$

8. 060208b, P.I. A2.A.10

If x is a positive integer, $4x^{\frac{1}{2}}$ is equivalent to

[A] 2x [B]
$$\frac{2}{x}$$
 [C] $4\sqrt{x}$ [D] $4\frac{1}{x}$

9. 060209b, P.I. A2.S.7

What is the equation of a parabola that goes through points (0,1), (-1,6), and (2,3)?

[A]
$$y = 2x^2 - 3x + 1$$
 [B] $y = x^2 - 3x + 1$
[C] $y = 2x^2 + 1$ [D] $y = x^2 + 1$

10. 060210b, P.I. A2.A.42

If $f(x) = 2x^2 + 4$ and g(x) = x - 3, which number satisfies $f(x) = (f \circ g)(x)$?

[A]
$$\frac{3}{4}$$
 [B] 5 [C] $\frac{3}{2}$ [D] 4

11. 060211b, P.I. A2.S.8

A linear regression equation of best fit between a student's attendance and the degree of success in school is h = 0.5x + 68.5. The correlation coefficient, *r*, for these data would be

[A] $0 < r < 1$	[B] $r = -1$
[C] -1 < r < 0	[D] $r = 0$

12. 060212b, P.I. A2.A.23

What is the solution set of the equation

$$\frac{x}{x-4} - \frac{1}{x+3} = \frac{28}{x^2 - x - 12}?$$
[A] { } [B] {4} [C] {-6} [D] {4,-6}

13. 060213b, P.I. A2.A.38 Which equation represents a function?

[A]
$$x^2 + y^2 = 4$$
 [B] $x = y^2 - 6x + 8$
[C] $y = x^2 - 3x - 4$ [D] $4y^2 = 36 - 9x^2$

- 14. 060214b, P.I. A2.A.22 What is the solution set of the equation $x = 2\sqrt{2x-3}$? [A] {2} [B] {6} [C] { } [D] {2,6}
- 15. 060215b, P.I. A2.N.9 What is the sum of $\sqrt{-2}$ and $\sqrt{-18}$?
 - [A] $5i\sqrt{2}$ [B] $4i\sqrt{2}$
 - [C] $2i\sqrt{5}$ [D] 6i

16. 060216b, P.I. A2.A.43 Which diagram represents a one-to-one function?

- 17. 060217b, P.I. G.G.61 Point *P'* is the image of point *P*(-3,4) after a translation defined by $T_{(7,-1)}$. Which other transformation on *P* would also produce *P'*? [A] $R_{90^{\circ}}$ [B] $R_{-90^{\circ}}$
 - [C] $r_{y=-x}$ [D] r_{y-axis}
- 18. 060218b, P.I. G.G.54

Which transformation does *not* preserve orientation?

- [A] rotation [B] dilation
- [C] reflection in the *y*-axis
- [D] translation

- 19. 060219b, P.I. A2.A.2 The roots of the equation 2x² - x = 4 are
 [A] real, rational, and unequal
 [B] imaginary
 [C] real and irrational
 [D] real, rational, and equal
- 20. 060220b, P.I. A2.A.44 Which graph represents the inverse of $f(x) = \{(0,1), (1,4), (2,3)\}$?

21. 060221b

On a nationwide examination, the Adams School had a mean score of 875 and a standard deviation of 12. The Boswell School had a mean score of 855 and a standard deviation of 20. In which school was there greater consistency in the scores? Explain how you arrived at your answer.

22. 060222b, P.I. A2.A.66

Is $\frac{1}{2}\sin 2x$ the same expression as $\sin x$? Justify your answer.

23. 060223b, P.I. A2.S.15

After studying a couple's family history, a doctor determines that the probability of any child born to this couple having a gene for disease *X* is 1 out of 4. If the couple has three children, what is the probability that *exactly* two of the children have the gene for disease *X*?

24. 060224b, P.I. A2.A.27

Growth of a certain strain of bacteria is modeled by the equation $G = A(2.7)^{0.584t}$, where: G = final number of bacteria, A = initial number of bacteria, t = time (in hours). In approximately how many hours will 4 bacteria first increase to 2,500 bacteria? Round your answer to the *nearest hour*.

25. 060225b, P.I. A.A.41

The equation $W = 120I - 12I^2$ represents the power (*W*), in watts, of a 120-volt circuit having a resistance of 12 ohms when a current (*I*) is flowing through the circuit. What is the maximum power, in watts, that can be delivered in this circuit?

26. 060226b, P.I. A.A.7

Island Rent-a-Car charges a car rental fee of \$40 plus \$5 per hour or fraction of an hour. Wayne's Wheels charges a car rental fee of \$25 plus \$7.50 per hour or fraction of an hour. Under what conditions does it cost *less* to rent from Island Rent-a-Car? [The use of the accompanying grid is optional.]

27. 060227b, P.I. A2.S.4

An electronics company produces a headphone set that can be adjusted to accommodate different-sized heads. Research into the distance between the top of people's heads and the top of their ears produced the following data, in inches: 4.5, 4.8, 6.2, 5.5, 5.6, 5.4, 5.8, 6.0, 5.8, 6.2, 4.6, 5.0, 5.4, 5.8. The company decides to design their headphones to accommodate three standard deviations from the mean. Find, to the *nearest tenth*, the mean, the standard deviation, and the range of distances that must be accommodated.

28. 060228b, P.I. A.A.11

A pelican flying in the air over water drops a crab from a height of 30 feet. The distance the crab is from the water as it falls can be represented by the function $h(t) = -16t^2 + 30$, where *t* is time, in seconds. To catch the crab as it falls, a gull flies along a path represented by the function g(t) = -8t + 15. Can the gull catch the crab before the crab hits the water? Justify your answer. [The use of the accompanying grid is optional.]

1 AFCD	1 Given
2 AB 1 BC, DE 1 EF	2 Given
3 $\angle B$ and $\angle E$ are right angles.	3
$4 \angle B \equiv \angle E$	4 All right angles are congruent.
5 BC FE	5 Given
6 ∠BCA ≡ ∠EFD	6
$7 \overline{AB} = \overline{DE}$	7 Given
	8
9 $\overline{AC} = \overline{FD}$	9

- 30. 060230b, P.I. A2.A.28 Solve for *x*: $\log_4(x^2 + 3x) - \log_4(x + 5) = 1$
- 31. 060231b, P.I. A2.A.73

A ship at sea heads directly toward a cliff on the shoreline. The accompanying diagram shows the top of the cliff, *D*, sighted from two locations, *A* and *B*, separated by distance *S*. If $m\angle DAC = 30$, $m\angle DBC = 45$, and S = 30feet, what is the height of the cliff, to the *nearest foot*?

32. 060232b, P.I. A2.A.73

Kieran is traveling from city *A* to city *B*. As the accompanying map indicates, Kieran could drive directly from *A* to *B* along County Route 21 at an average speed of 55 miles per hour or travel on the interstates, 45 miles along I-85 and 20 miles along I-64. The two interstates intersect at an angle of 150° at *C* and have a speed limit of 65 miles per hour. How much time will Kieran save by traveling along the interstates at an average speed of 65 miles per hour?

33. 060233b

On a monitor, the graphs of two impulses are recorded on the same screen, where $0^{\circ} \le x < 360^{\circ}$. The impulses are given by the

following equations:

$$y = 2\sin^2 x$$
$$y = 1 - \sin x$$

. 2

Find all values of *x*, in degrees, for which the two impulses meet in the interval $0^{\circ} \le x < 360^{\circ}$. [Only an algebraic solution will be accepted.]

34. 060234b, P.I. A2.S.7

The table below, created in 1996, shows a history of transit fares from 1955 to 1995. On the accompanying grid, construct a scatter plot where the independent variable is years. State the exponential regression equation with the coefficient and base rounded to the *nearest thousandth*. Using this equation, determine the prediction that should have been made for the year 1998, to the *nearest cent*.

Year	Fare (\$)
55	0.10
60	0.15
65	0.20
70	0.30
75	0.40
80	0.60
85	0.80
90	1.15
95	1.50

Math B Regents Exam 0602 www.jmap.org

[1]	<u>B</u>		[2] The Adams School, and an appropriate
[2]	<u>D</u>		explanation is given, such as the standard deviation is a measure of dispersion, which is
[3]	B		how much the scores, on the average, differ from the mean. Therefore, the school with the
[4]	<u>B</u>		smaller standard deviation would have the more consistent scores
[5]	<u>D</u>		[1] The Adams School, but an incomplete
[6]	<u>C</u>		explanation is given, or the school is not stated, but an appropriate explanation is
[7]	<u>B</u>		given.
[8]	<u>C</u>		irrelevant, or incoherent or is a correct response that was obtained by an obviously
[9]	<u>A</u>	[21]	incorrect procedure.
[10]	<u>C</u>		[2] No, and appropriate work is shown, such
[11]	<u>A</u>		as setting the expressions equal to each other, with one trial showing that the two
[12]	<u>C</u>		expressions are not always equal. [1] No, but only one trial shows that the two
[13]	<u>C</u>		expressions are not always equal.
[14]	<u>D</u>		or [1] Yes, but appropriate work is shown, such as using 0° and 180° as trials.
[15]	<u>B</u>		[0] No or yes, and no work or incorrect work is shown.
[16]	<u>B</u>		or [0] A zero response is completely
[17]	В		correct response that was obtained by an
[18]	C	[22]	obviously incorrect procedure.
[19]	<u>C</u>		[2] $\frac{9}{64}$, and appropriate work is shown, such
[20]	<u>B</u>		as ${}_{3}C_{2}(\frac{1}{4})^{2}(\frac{3}{4})^{1}$.
			[1] Only ${}_{3}C_{2}(\frac{1}{4})^{2}(\frac{3}{4})^{1}$ is shown.

or [1] Appropriate work is shown, but one computational error is made.

or [1] $\frac{9}{64}$, but no work is shown.

[0] A zero response is completely incorrect, irrelevant, or incoherent or is a correct response that was obtained by an obviously

[23] incorrect procedure.

[2] 12, and appropriate work is shown, such as solving $2,500 = 4(2.7)^{0.584t}$.

[1] Appropriate work is shown, but the answer is not rounded or is rounded to 11. or [1] Appropriate work is shown, but one computational error is made.

or [1] 12, but no work is shown. [0] A zero response is completely incorrect,

irrelevant, or incoherent or is a correct response that was obtained by an obviously

[24] incorrect procedure.

[2] 300, and appropriate work is shown.[1] Appropriate work is shown, but one computational error is made.or [1] 300, but no work is shown.

[0] A zero response is completely incorrect, irrelevant, or incoherent or is a correct response that was obtained by an obviously

[25] incorrect procedure.

[2] More than 6 hours, and appropriate work is shown, using a graphic or algebraic solution.

[1] Appropriate work is shown, but one computational error or an error in analyzing the results is made.

or [1] More than 6 hours, but no work is shown.

[0] A zero response is completely incorrect, irrelevant, or incoherent or is a correct response that was obtained by an obviously

[26] incorrect procedure.

[4] $\overline{x} = 5.5$, $\sigma = 0.5$, and the range is 4-7, and appropriate work is shown.

[3] $\bar{x} = 5.5$, $\sigma = 0.5$, but one computational error is made when finding the range, but appropriate work is shown.

or [3] \overline{x} is correct, but σ is incorrect, but the range is appropriate, based on the incorrect σ .

or [3] \overline{x} is incorrect, but σ and the range are appropriate, based on the incorrect \overline{x} .

[2] \overline{x} is incorrect and σ is incorrect, but the range is appropriate, based on the incorrect \overline{x} and σ .

or [2] \bar{x} is correct and σ is correct, but the range is not determined.

[1] $\overline{x} = 5.5$, $\sigma = 0.5$, and the range is 4-7, but no work is shown.

[0] A zero response is completely incorrect, irrelevant, or incoherent or is a correct response that was obtained by an obviously

[27] incorrect procedure.

[4] Yes, and appropriate work is shown, and an appropriate justification is given.

[3] Appropriate work is shown, and an appropriate justification is given, but one computational error is made, or the negative value of t is not rejected.

[2] An appropriate graph or equation is shown, such as $16t^2 - 8t - 15 = 0$.

[1] An incorrect graph or equation of equal difficulty is used, but an appropriate solution is found.

[0] A zero response is completely incorrect, irrelevant, or incoherent or is a correct response that was obtained by an obviously

[28] incorrect procedure.

[4] The reasons for all four steps are correct, such as:

Step 3: Perpendicular line segments form right angles.

Step 6: If two parallel lines are cut by a transversal, the alternate interior angles are congruent.

Step 8: $AAS \cong AAS$.

Step 9: Corresponding parts of congruent triangles are congruent.

[3] The reasons for only three steps are correct.

[2] The reasons for only two steps are correct.

[1] The reason for only one step is correct.

[0] A zero response is completely incorrect, irrelevant, or incoherent or is a correct response that was obtained by an obviously

[29] incorrect procedure.

[4] 5 and -4, and appropriate work is shown.[3] Appropriate work is shown, but one computational error is made.

[2] The correct log equation,

 $\log_4 \frac{x^2 + 3x}{x+5} = \log_4 4$, is shown, but no further

work or incorrect work is shown.

[1] One correct logarithmic step is shown,

such as $\log_4 \frac{x^2 + 3x}{x+5}$.

or [1] 5 and -4, but no work is shown.

[0] A zero response is completely incorrect, irrelevant, or incoherent or is a correct response that was obtained by an obviously

[30] incorrect procedure.

[4] 41, and appropriate work is shown.[3] Appropriate work is shown, but one computational or rounding error is made.[2] One incorrect formula is used, but an appropriate answer is found.

or [2] Appropriate work is shown, but one computational and one rounding error are made.

[1] 41, but no work is shown.

[0] A zero response is completely incorrect, irrelevant, or incoherent or is a correct response that was obtained by an obviously

[31] incorrect procedure.

[4] 0.15 hour or 9 minutes or an appropriately rounded answer, and appropriate work is shown, such as using the Law of Cosines.[3] Appropriate work is shown, but one computational or rounding error is made.[2] The correct distance along County Route 21 is found, but no further work or incorrect work is shown.

or [2] Appropriate work is shown, but one computational and one rounding error are made.

[1] The Pythagorean theorem is used to find the distance along County Route 21, and this distance is used to compare travel times. or [1] 0.15 hour or an equivalent answer, but no work is shown.

[0] A zero response is completely incorrect, irrelevant, or incoherent or is a correct response that was obtained by an obviously

[32] incorrect procedure.

- [6] 30, 150, and 270, and appropriate work is shown.
- [5] Appropriate work is shown, but one computational error is made.
- [4] The correct equation is shown, but only two correct solutions are found.
- [3] The correct equation is shown, but only one correct solution is found.
- [2] The correct equation is solved for *x*, but no further work is shown.
- [1] The correct equation is shown, but no further work is shown.
- or [1] 30, 150, and 270, but no work is shown. [0] A zero response is completely incorrect, irrelevant, or incoherent or is a correct
- response that was obtained by an obviously
- [33] incorrect procedure.

[6] A correct scatter plot, $y = (0.002)(1.070)^x$,

and \$1.52 or an equivalent answer, and appropriate work is shown.

[5] Appropriate work is shown, but one computational or rounding error is made.
[4] A correct scatter plot is shown, but an incorrect equation of equal difficulty is used, but an appropriate fare for 1998 is determined, based on the incorrect equation. or [4] A correct scatter plot with a function other than exponential is used, but an appropriate equation and fare derived from that equation are shown.

[3] A correct scatter plot is shown, and an appropriate fare based on the scatter plot is found, but no equation or work is shown.[2] Only a correct scatter plot is shown.

[1] \$1.52, but no work is shown.

[0] A zero response is completely incorrect, irrelevant, or incoherent or is a correct response that was obtained by an obviously

[34] incorrect procedure.