The University of the State of New York

REGENTS HIGH SCHOOL EXAMINATION

MATHEMATICS B

Tuesday, January 27, 2009 — 9:15 a.m. to 12:15 p.m., only

Print Your Name:

Steve Sibol

Print Your School's Name: WWW. jMap. org

Print your name and the name of your school in the boxes above. Then turn to the last page of this booklet, which is the answer sheet for Part I. Fold the last page along the perforations and, slowly and carefully, tear off the answer sheet. Then fill in the heading of your answer sheet.

Scrap paper is not permitted for any part of this examination, but you may use the blank spaces in this booklet as scrap paper. A perforated sheet of scrap graph paper is provided at the end of this booklet for any question for which graphing may be helpful but is not required. You may remove this sheet from this booklet. Any work done on this sheet of scrap graph paper will not be scored. Write all your work in pen, except graphs and drawings, which should be done in pencil.

The formulas that you may need to answer some questions in this examination are found on page 23. This sheet is perforated so you may remove it from this booklet.

This examination has four parts, with a total of 34 questions. You must answer all questions in this examination. Write your answers to the Part I multiple-choice questions on the separate answer sheet. Write your answers to the questions in Parts II, III, and IV directly in this booklet. Clearly indicate the necessary steps, including appropriate formula substitutions, diagrams, graphs, charts, etc.

When you have completed the examination, you must sign the statement printed at the end of the answer sheet, indicating that you had no unlawful knowledge of the questions or answers/prior to the examination and that you have neither given nor received assistance in answering any of the questions during the examination. Your answer sheet cannot be accepted if you fail to sign this declaration.

Notice...

A graphing calculator, a straightedge (ruler), and a compass must be available for you to use while taking this examination.

The use of any communications device is strictly prohibited when taking this examination. If you use any communications device, no matter how briefly, your examination will be invalidated and no score will be calculated for you.

DO NOT OPEN THIS EXAMINATION BOOKLET UNTIL THE SIGNAL IS GIVEN.

MATHEMATICS B

Part I

Answer all questions in this part. Each correct answer will receive 2 credits. No partial credit will be allowed. For each question, write on the separate answer sheet the numeral preceding the word or expression that best completes the statement or answers the question. [40]

1 The parabola shown in the accompanying diagram undergoes a reflection in the y-axis.

What will be the coordinates of the turning point after the reflection?

Use this space for computations.

- 5-12

5

(1) (3,-1)(2) (3,1)

2 The expression $\frac{5}{3+\sqrt{2}}$ is equivalent to (1) $\frac{\sqrt{2}-15}{3}$ (3) $\frac{15-5\sqrt{2}}{7}$ (3) $\frac{15-5\sqrt{2}}{7}$ (3) $\frac{-15-5\sqrt{2}}{7}$ (3) $\frac{-15-5\sqrt{2}}{7$

(4) $15 - 5\sqrt{2^{7}}$

[2]

(2) $\frac{5\sqrt{2}-15}{5}$

Math. B - Jan. '09

Use this space for 3 If the probability that the Islanders will beat the Rangers in a game computations. n-r is $\frac{2}{5}$, which expression represents the probability that the Islanders 9 will win *exactly* four out of seven games in a series against the Rangers? $(3) {}_{7}C_{4}\left(\frac{2}{5}\right)^{4}\left(\frac{2}{5}\right)^{3} \qquad h > 7 \\ r = 4 \qquad - C_{4}\left(\frac{2}{5}\right)^{4}\left(\frac{2}{5}\right)^{3} \qquad r = 4 \qquad - C_{4}\left(\frac{2}{5}\right)^{4}\left(\frac{3}{5}\right)^{3}$ (1) $\left(\frac{2}{5}\right)^4 \left(\frac{3}{5}\right)^3$ アショー $(4) {}_7C_4\left(\frac{2}{5}\right)^4 \left(\frac{3}{5}\right)^3$ (2) ${}_{5}C_{2}\left(\frac{4}{7}\right)^{2}\left(\frac{3}{7}\right)^{3}$ (x-3)(x+2) - 6 - 6 - 0(x-3)(x+2) - 0 x-3 - 0 and x+2>0 4 What is the solution of the inequality $x^2 - x - 6 < 0$? (3) 1 < x < 6(4) -3 < x < 2(1) -3 < x < -2x23 and x7-2. 5 Which expression is equivalent to i^{55} ? $\frac{(3)_{i}}{(4)-i} = \frac{55}{4} = 13 R3 \qquad i^{3} = -i$ (1) 1(2) -1

6 What is the translation that maps the function $f(x) = x^2 - 1$ onto the

Math. B – Jan. '09

[3]

Use this space for

1 . 2 1 3

8 The accompanying diagram shows two intersecting paths within a computations. circular garden.

5-x=6:10 6D XII

What is the length of the portion of the path marked x?

(1)
$$8\frac{1}{3}$$
 (3) 3
(2) 11 (4) 12

9 If f(x) = 3x - 5 and g(x) = x - 9, which expression is equivalent to f(g(x)) = 3(x-9) - 53x-27-5 $(\mathbf{f} \circ \mathbf{g})(\mathbf{x})$? (1) 4x - 14(2) 3x - 143x-32

12 A graphic designer is drawing a pattern of four concentric circles on the coordinate plane. The center of the circles is located at (-2,1). The smallest circle has a radius of 1 unit. If the radius of each of the circles is one unit greater than the largest circle within it, what would be the F=4 r2=16, equation of the fourth circle?

(1) $(x-2)^2 + (y+1)^2 = 4$ (2) $(x + 2)^2 + (y - 1)^2 = 4$ (3) $(x - 2)^2 + (y + 1)^2 = 16$ (4) $(x + 2)^2 + (y - 1)^2 = 16$

13 Carol notices that the number of customers who visit her coffee shop varies inversely with the average daily temperature. Yesterday, the average temperature was 40° and she had 160 customers. If today's average temperature is 25°, how many customers should she expect?

(1) 100(2) 145

1,000

Use this space for computations.

ctoct 160.40= C.25

256 = C

Function 14 Given the relation A: $\{(3,2), (5,3), (6,2), (7,4)\}$ (2,3), (3,5), (2,6), (4,7)} Not a function Which statement is true? (1) Both A and A^{-1} are functions. (2) Neither A nor A^{-1} is a function. (3) Only A is a function.

(4) Only A^{-1} is a function.

15 The expression $\cot \theta \cdot \sec \theta$ is equivalent to

Math. B - Jan. '09

[5]

 $\sin \theta$

Sino

CSC O

[OVER]

 $\cot \theta$; see θ

[6]

Use this space for computations.

18 The accompanying graph illustrates the presence of a certain strain of bacteria at various pH levels.

What is the range of this set of data?

- (1) $5 \le x \le 9$ $(3) \quad 0 \le y \le 70$ (2) $5 \le x \le 70$ $(4) 5 \le y \le 70$
- 19 Juan has been told to write a quadratic equation where the sum of the roots is equal to -3 and the product of the roots is equal to -9. Which equation meets these requirements?

(1)
$$x^{2} + 3x + 9 = 0$$

(2) $x^{2} - 12x + 27 = 0$
(3) $2x^{2} + 6x - 18 = 0$
(4) $(x + 3)(x + 9) = 0$

sum of roots $=\frac{1}{a}=\frac{-6}{2}=-3$ product of koots $\frac{c}{a} = \frac{-18}{2} = -9$

Math. B – Jan. '09

[7]

20 The accompanying diagram shows part of the architectural plans for a structural support of a building. *PLAN* is a rectangle and $\overline{AS} \perp \overline{LN}$.

Which equation can be used to find the length of \overline{AS} ?

(1)	$\frac{LS}{AS}$	AS SN	(3)	$\frac{AS}{SN}$	$=\frac{AS}{LS}$	
(2)	$\frac{AN}{LN}$ =	$=\frac{AS}{LS}$	(4)	$\frac{AS}{LS}$	$=\frac{LS}{SN}$	

Use this space for computations.

N 3 S

Math. B – Jan. '09

[8]

Part II

Answer all questions in this part. Each correct answer will receive 2 credits. Clearly indicate the necessary steps, including appropriate formula substitutions, diagrams, graphs, charts, etc. For all questions in this part, a correct numerical answer with no work shown will receive only 1 credit. [12]

21 Solve for x: $\sqrt{x+18} - 2 = 2$ +2+2 1×118 = 1 x+18 = 16 -18 -18 X = -2

22 Evaluate: $\sum_{n=1}^{3} \left(\sin \frac{n\pi}{2} \right)$ $\frac{n}{1} \frac{\sin \frac{\pi}{2}}{\sin \frac{\pi}{2}} = 1$ $2 \frac{\sin \frac{\pi}{2}}{\sin \frac{\pi}{2}} = 0$ $3 \frac{\sin \frac{\pi}{2}}{\sin \frac{\pi}{2}} = -1$ **23** Given a starting population of 100 bacteria, the formula $b = 100(2^t)$ can be used to find the number of bacteria, b, after t periods of time. If each period is 15 minutes long, how many minutes will it take for the population of bacteria to reach 51,200? $51,200 = 100.2^{t}$ 517 109512 = 1092t t log 2 1095 9 1092 135

24 In the accompanying diagram of parallelogram ABCD, $m\angle A = 30$, AB = 10, and AD = 6. What is the area of parallelogram ABCD?

A= 6-10 = 30 = 30

Math. B – Jan. '09

25 What is the solution of the inequality $|2x - 5| \le 11$? 2x - 5/211 +5 +5 $2x - 5 \ge -11$ +5 +5 46 XZ-3 X 3 8 $-3 \le x \le 8$ 26 The volume of Earth can be calculated by using the formula $V = \frac{4}{3}\pi r^3$. Solve for r in terms of V. 3. V= 安かう · 75-3V UT 3V 417 [12] Math. B - Jan. '09

Part III

Answer all questions in this part. Each correct answer will receive 4 credits. Clearly indicate the necessary steps, including appropriate formula substitutions, diagrams, graphs, charts, etc. For all questions in this part, a correct numerical answer with no work shown will receive only 1 credit. [24]

27 The average monthly high temperatures, in degrees Fahrenheit, for Binghamton, New York, are given below.

January 28 78July February 31 76 August September (68) March April October November (May 73December 33 June

For these temperatures, find, to the *nearest tenth*, the mean, the population standard deviation, and the number of months that fall within one standard deviation of the mean.

 $\overline{X} = 54.2$ $\sigma_x = 17.6$

54.2+17.6

54.2 -11 71,8 36.6

ب ، ، ، ۱

, months

. . .

·

Math. B - Jan. '09

[13]

28 Perform the indicated operations and express in simplest form: $\frac{3x^2 + 12x - 15}{x^2 + 2x - 15} \div \frac{3x^2 - 3x}{3x - x^2}$ $\frac{3(x^2+4x-5)}{(x+5)(x-3)} \times \frac{3x-x^2}{3x^2-3x}$ $\frac{3(x+3)(x-1)}{(x+3)(x-3)} \times \frac{1}{3(x-1)}$ $\frac{3-x}{x-3}$

Math. B - Jan. '09

[14]

29 In $\triangle ABC$, a = 24, b = 36, and c = 30. Find m $\angle A$ to the nearest tenth of a degree. $a^2 = b^2 + c^2 - 2bc \cos A$ 242 = 362 +302-2(36) (30) cos A $576 = 1296 + 900 - 2160 \cos A$ -1620 = $-2160 \cos A$ -2160 - 2160 162 = cos A 216 162 (os-) 41.4 = A

[15]

30 Farmington, New York, has plans for a new triangular park. If plotted on a coordinate grid, the vertices would be A(3,3), B(5,-2), and C(-3,-1). However, a tract of land has become available that would enable the planners to increase the size of the park, which is based on the following transformation of the original triangular park, $R_{270} \circ D_2$.

On the grid on the next page, graph and label both the original park $\triangle ABC$ and its image, the new park $\triangle A''B''C''$, following the transformation.

DABC (3,3)A (5, -2) B C (-3,-])

DA'B'C' (6, 6)(10,-4)

(6, -6)(-4, -10)(-6, -2)

(-2, 6)

 $\Delta A"B"C"$

Math. B - Jan. '09

[16]

Question 30 continued

2

Math. B – Jan. '09

[17]

31 Find the roots of the equation $x^2 + 7 = 2x$ and express your answer in simplest a + bi form. X2-7-7-2X -2x -2x x2-2x7750 -6±162-4ac 2a a 3 X 5 b -2 = 1(-2)2 - 4(1)(7) 20 んニタ 5 2= 141617 12215 = 1+i16 and 1-i16

[18]

Answer all questions in this part. Each correct answer will receive 6 credits. Clearly indicate the necessary steps, including appropriate formula substitutions, diagrams, graphs, charts, etc. For all questions in this part, a correct numerical answer with no work shown will receive only 1 credit. [12]

33 The accompanying table shows wind speed and the corresponding wind chill factor when the air temperature is 10°F.

Wind Speed (mi/h) <i>x</i>	Wind Chill Factor (°F)
4	3
5	1
12	-5
16	-7
22	-10
31	-12

Write the logarithmic regression equation for this set of data, rounding

coefficients to the nearest ten thousandth. $y = 13,0134 - 7.3135 \ln X$ Using this equation, find the wind chill factor, to the nearest degree, when the wind speed is 50 miles per hour. $13,0134 - 7.3135 \ln S0 = -16$

Based on your equation, if the wind chill factor is 0°, what is the wind speed, to the *nearest mile per hour*?

(j=13.0)34-7.3135 (nX - 13.0134 =-13.0134 -13,0134 -J.3135 (nx ------ 3135 07. 13.0134 7 3135 $(\frac{13.0134}{7.3135})$ [20]Math. B - Jan. '09

34 Given: PROE is a rhombus, SEO, PEV, \angle SPR $\cong \angle$ VOR E R Prove: $\overline{SE} \cong \overline{EV}$ REASON STATEMENT DPROE is a rhombus, SEO, () Given PEV, LSPR = LVOR D Vertical Angles DLSEPE LVED All sides of a rhombus are congruent Opposite angles of a 3 PE = DE D LEPR Z LEOR 4) rhombus are congruent Angle Subtraction Theorem LSPE Z L VOE (s)Δ SDE = Δ VOE ASA CPCTC. SE Z EV 50 [21] Math. B - Jan. '09