INTERMEDIATE ALGEBRA — concluded

6 a For what values of \(m \) will the roots of the equation
\[x^2 - (m - 3) x + 2m - 9 = 0 \]
be equal? \([6\frac{1}{2}]\)

b Determine the nature of the roots of
\[25x^2 + 75x - k = 0 \]
when \(k \) is a positive number. \([6]\)

7 The arms of a right triangle are 5 feet and \(x \) feet.

a Express the hypotenuse, the perimeter and the area in terms of \(x \). \([3]\)

b If the number of linear feet in the perimeter equals the number of square feet in the area, find the numerical
value of \(x \). \([3\frac{1}{2}, 6]\)

8 A man bought a lot for \$280; he then sold it for \$60 an acre, thereby gaining as much as \(3\frac{1}{2} \) acres of the lot had cost him. How many acres were there in the lot? \([7\frac{1}{2}, 5]\)

9 A man saves \$a\) the first year and increases by \$d\) each year the amount saved the preceding year.

a How much will he save \(n \)th year? \([2\frac{1}{2}]\)

b Using the proper formula, find how many years it will take him to save \$4500 if \$a = \$100 and \$d = \$50. \([10]\)

10 a By substitution in the proper formula find the expression for the sum of the first 10 terms of the progression
1, 1.05, (1.05)^2, . . . \([6\frac{1}{2}]\)

b Using logarithms, find the value of the expression
\[\frac{(1.04)^{11}}{0.46} \]

11 a If \(x \) is a positive number, determine without solving whether each of the following statements is true or false: \([Copy each statement and after it write the word true or false, giving a reason in each case.\]

\[\frac{50}{x^2 + 7} = -4; \quad \sqrt{2x + 1} = -1; \quad \frac{200}{x^2 + 5} = \frac{200}{x} \]

b Given \(y = mx + c \); if \(y = -1 \) when \(x = 1 \), and \(y = 5 \) when \(x = 4 \), find the values of \(m \) and \(c \). \([6\frac{1}{2}]\)

12 The dimensions of a rectangle are 5 and 3. The longer dimension is decreased by \(x \) and the shorter dimension is increased by \(x \); the area of the new figure is represented by \(y \).

a Express \(y \) in terms of \(x \). \([3]\)

b Graph the relation between \(y \) and \(x \) for integral values of \(x \) from \(-3 \) to \(5 \) inclusive. \([6\frac{1}{2}]\)

c From the graph determine \(x \) and \(y \) when the area is the largest possible. \([3]\)