Part I

Answer all 28 questions in this part. Each correct answer will receive 2 credits. No partial credit will be allowed. For each question, write on the separate answer sheet the numeral preceding the word or expression that best completes the statement or answers the question. [56]

1. In the diagram below of trapezoid RSUT, \(RS \parallel TU \), \(X \) is the midpoint of \(RT \), and \(V \) is the midpoint of \(SU \).

![Diagram of trapezoid RSUT with X and V marked as midpoints]

If \(RS = 30 \) and \(XV = 44 \), what is the length of \(TU \)?

\[\begin{align*}
(1) \ 37 & \quad (3) \ 74 \\
(2) \ 58 & \quad (4) \ 118
\end{align*} \]

Because \(X \) and \(V \) are midpoints, \(XV \) is the midsegment of the trapezoid, and its length is equal to the average of \(RS \) and \(TU \).

\[\frac{30 + x}{2} = 44 \]

\[30 + x = 88 \]

\[x = 58 \]

2. In \(\triangle ABC \), \(\angle A = x \), \(\angle B = 2x + 2 \), and \(\angle C = 3x + 4 \). What is the value of \(x \)?

\[\begin{align*}
(1) \ 29 & \quad (3) \ 59 \\
(2) \ 31 & \quad (4) \ 61
\end{align*} \]

\[x + 2x + 2 + 3x + 4 = 180 \]

\[6x + 6 = 180 \]

\[6x = 174 \]

\[x = 29 \]
3 Which expression best describes the transformation shown in the diagram below?

(1) same orientation; reflection
(2) opposite orientation; reflection
(3) same orientation; translation
(4) opposite orientation; translation

4 Based on the construction below, which statement must be true?

(1) \(m\angle ABD = \frac{1}{2} m\angle CBD \)
(2) \(m\angle ABD = m\angle CBD \)
(3) \(m\angle ABD = m\angle ABC \)
(4) \(m\angle CBD = \frac{1}{2} m\angle ABD \)
5 In the diagram below, \(\triangle ABC \) is inscribed in circle \(P \). The distances from the center of circle \(P \) to each side of the triangle are shown.

\[\text{The closer a chord is to the center of a circle, the longer the chord.} \]

Which statement about the sides of the triangle is true?

(1) \(AB > AC > BC \)
(2) \(AB < AC \) and \(AC > BC \)
(3) \(AC > AB > BC \)
(4) \(AC = AB \) and \(AB > BC \)

6 Which transformation is not always an isometry?

(1) rotation
(2) dilation
(3) reflection
(4) translation

7 In \(\triangle ABC \), \(\overline{AB} \equiv \overline{BC} \). An altitude is drawn from \(B \) to \(\overline{AC} \) and intersects \(\overline{AC} \) at \(D \). Which statement is not always true?

(1) \(\angle ABD \equiv \angle CBD \)
(2) \(\angle BDA \equiv \angle BDC \)
(3) \(\overline{AD} \equiv \overline{BD} \)
(4) \(\overline{AD} \equiv \overline{DC} \)
8 In the diagram below, tangent \(\overline{PA} \) and secant \(\overline{PBC} \) are drawn to circle \(O \) from external point \(P \).

If \(PB = 4 \) and \(BC = 5 \), what is the length of \(PA \)?

(1) 20 (3) 8
(2) 9 (4) 6

9 Which geometric principle is used to justify the construction below?

(1) A line perpendicular to one of two parallel lines is perpendicular to the other.
(2) Two lines are perpendicular if they intersect to form congruent adjacent angles.
(3) When two lines are intersected by a transversal and alternate interior angles are congruent, the lines are parallel.
(4) When two lines are intersected by a transversal and the corresponding angles are congruent, the lines are parallel.
10 Which equation represents the circle whose center is \((-2,3)\) and whose radius is 5?

(1) \((x - 2)^2 + (y + 3)^2 = 5\)
(2) \((x + 2)^2 + (y - 3)^2 = 5\)
(3) \((x + 2)^2 + (y - 3)^2 = 25\)
(4) \((x - 2)^2 + (y + 3)^2 = 25\)

11 Towns A and B are 16 miles apart. How many points are 10 miles from town A and 12 miles from town B?

(1) 1
(2) 2
(3) 3
(4) 0

12 Lines \(j\) and \(k\) intersect at point \(P\). Line \(m\) is drawn so that it is perpendicular to lines \(j\) and \(k\) at point \(P\). Which statement is correct?

(1) Lines \(j\) and \(k\) are in perpendicular planes.
(2) Line \(m\) is in the same plane as lines \(j\) and \(k\).
(3) Line \(m\) is parallel to the plane containing lines \(j\) and \(k\).
(4) Line \(m\) is perpendicular to the plane containing lines \(j\) and \(k\).
13 In the diagram below of parallelogram $STUV$, $SV = x + 3$, $VU = 2x - 1$, and $TU = 4x - 3$.

What is the length of SV?

- (1) 5
- (2) 2
- (3) 7
- (4) 4

14 Which equation represents a line parallel to the line whose equation is $2y - 5x = 10$?

- (1) $5y - 2x = 25$
- (2) $5y + 2x = 10$
- (3) $4y - 10x = 12$
- (4) $2y + 10x = 8$
15 In the diagram below of circle O, chords \overline{AD} and \overline{BC} intersect at E, $m\angle AC = 87$, and $m\angle BD = 35$.

What is the degree measure of $\angle CEA$?

(1) 87 (2) 61
(3) 43.5 (4) 26

16 In the diagram below of $\triangle ADB$, $m\angle BDA = 90$, $AD = 5\sqrt{2}$, and $AB = 2\sqrt{15}$.

What is the length of BD?

(1) $\sqrt{10}$ (2) $\sqrt{20}$
(3) $\sqrt{50}$ (4) $\sqrt{110}$
17 What is the distance between the points \((-3, 2)\) and \((1, 0)\)?

(1) \(2\sqrt{2}\)
(2) \(2\sqrt{3}\)
(3) \(5\sqrt{2}\)
(4) \(2\sqrt{5}\)

\[
\sqrt{(-3-1)^2 + (2-0)^2} = \sqrt{16 + 4} = \sqrt{20} = \sqrt{4 \times 5} = 2\sqrt{5}
\]

18 What is an equation of the line that contains the point \((3, -1)\) and is perpendicular to the line whose equation is \(y = -3x + 2\)?

\(\frac{y - (-1)}{x - 3} = \frac{1}{3}\)

(1) \(y = -3x + 8\)
(2) \(y = -3x\)
(3) \(y = \frac{1}{3}x\)
(4) \(y = \frac{1}{3}x - 2\)

19 In the diagram below, \(SQ\) and \(PR\) intersect at \(T\), \(PQ\) is drawn, and \(PS \parallel QR\).

Which technique can be used to prove \(\triangle PST \sim \triangle RQT\)?

(1) SAS
(2) SSS
(3) ASA
(4) AA
20 The equation of a circle is \((x - 2)^2 + (y + 4)^2 = 4\). Which diagram is the graph of the circle?
21 In the diagram below, \(\triangle ABC \) is shown with \(\overline{AC} \) extended through point \(D \).

If \(\angle BCD = 6x + 2 \), \(\angle BAC = 3x + 15 \), and \(\angle ABC = 2x - 1 \), what is the value of \(x \)?

\[
\begin{align*}
(1) & \quad 12 \\
(2) & \quad 14 \frac{10}{11} \\
(3) & \quad 16 \\
(4) & \quad 18 \frac{1}{9}
\end{align*}
\]

22 Given \(\triangle ABC \sim \triangle DEF \) such that \(\frac{AB}{DE} = \frac{3}{2} \). Which statement is not true?

\[
\begin{align*}
(1) & \quad \frac{BC}{EF} = \frac{3}{2} \\
(2) & \quad \frac{m \angle A}{m \angle D} = \frac{3}{2} \\
(3) & \quad \frac{\text{area of } \triangle ABC}{\text{area of } \triangle DEF} = \frac{9}{4} \\
(4) & \quad \frac{\text{perimeter of } \triangle ABC}{\text{perimeter of } \triangle DEF} = \frac{3}{2}
\end{align*}
\]
23 The pentagon in the diagram below is formed by five rays.

What is the degree measure of angle x?

(1) 72
(2) 96
(3) 108
(4) 112

24 Through a given point, P, on a plane, how many lines can be drawn that are perpendicular to that plane?

(1) 1
(2) 2
(3) more than 2
(4) none

25 What is the slope of a line that is perpendicular to the line whose equation is $3x + 4y = 12$?

(1) $\frac{3}{4}$
(2) $-\frac{3}{4}$
(3) $\frac{4}{3}$
(4) $-\frac{4}{3}$
26 What is the image of point $A(4,2)$ after the composition of transformations defined by $R_{90^\circ} \circ r_y = x$?

- (1) $(-4,2)$
- (2) $(4,-2)$
- (3) $(-4,-2)$
- (4) $(2,-4)$

27 Which expression represents the volume, in cubic centimeters, of the cylinder represented in the diagram below?

- (1) 162π
- (2) 324π
- (3) 972π
- (4) $3,888\pi$

28 What is the inverse of the statement "If two triangles are not similar, their corresponding angles are not congruent"?

- (1) If two triangles are similar, their corresponding angles are not congruent.
- (2) If corresponding angles of two triangles are not congruent, the triangles are not similar.
- (3) If two triangles are similar, their corresponding angles are congruent.
- (4) If corresponding angles of two triangles are congruent, the triangles are similar.
Part II

Answer all 6 questions in this part. Each correct answer will receive 2 credits. Clearly indicate the necessary steps, including appropriate formula substitutions, diagrams, graphs, charts, etc. For all questions in this part, a correct numerical answer with no work shown will receive only 1 credit. All answers should be written in pen, except for graphs and drawings, which should be done in pencil. [12]

29 In \(\triangle RST \), \(\angle RST = 46 \) and \(RS \approx ST \). Find \(\angle STR \).

\[180 = 134 + 46 \]

\[\frac{134}{2} = 67 \]
Tim has a rectangular prism with a length of 10 centimeters, a width of 2 centimeters, and an unknown height. He needs to build another rectangular prism with a length of 5 centimeters and the same height as the original prism. The volume of the two prisms will be the same. Find the width, in centimeters, of the new prism.

\[V_1 = V_2 \]

\[l_1 w_1 h_1 = l_2 w_2 h_2 \]

\[(10)(2)(h) = (5)(w_2)(h) \]

\[20 = 5w_2 \]

\[\frac{20}{5} = w_2 \]

\[4 = w_2 \]
31 In the diagram below of circle C, \overline{QR} is a diameter, and $Q(1,8)$ and $C(3,5,2)$ are points on a coordinate plane.

Find and state the coordinates of point R.

\[
\begin{align*}
3.5 &= \frac{1+x}{2} & 2 &= \frac{8+y}{2} \\
7 &= 1+x & 4 &= 8+y \\
6 &= x & -4 &= y \\
\end{align*}
\]

$(6, -4)$
32 Using a compass and straightedge, and \overline{AB} below, construct an equilateral triangle with all sides congruent to \overline{AB}. [Leave all construction marks.]
33 In the diagram below of $\triangle ACD$, E is a point on AD and B is a point on AC, such that $EB \parallel DC$. If $AE = 3$, $ED = 6$, and $DC = 15$, find the length of EB.

\[
\frac{3}{x} = \frac{9}{15}
\]

\[9x = 45\]

\[x = 5\]
34 In the diagram below of $\triangle TEM$, medians \overline{TB}, \overline{EC}, and \overline{MA} intersect at D, and $TB = 9$. Find the length of TD.

The centroid divides the medians into segments with a $2:1$ ratio.

$TD = 6$
Part III

Answer all 3 questions in this part. Each correct answer will receive 4 credits. Clearly indicate the necessary steps, including appropriate formula substitutions, diagrams, graphs, charts, etc. For all questions in this part, a correct numerical answer with no work shown will receive only 1 credit. All answers should be written in pen, except for graphs and drawings, which should be done in pencil. [12]

35 In \(\triangle KLM \), \(m\angle K = 36 \) and \(KM = 5 \). The transformation \(D_2 \) is performed on \(\triangle KLM \) to form \(\triangle K'L'M' \).

Find \(m\angle K' \). Justify your answer.

Find the length of \(K'M' \). Justify your answer.

36. A dilation does not affect angle measure

\[5 \times 2 = 10 \]

A dilation affects distance
36 Given: $JKLM$ is a parallelogram.

$JM \parallel LN$

$\angle LMN \equiv \angle LNM$

Prove: $JKLM$ is a rhombus.

<table>
<thead>
<tr>
<th>STATEMENT</th>
<th>REASON</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. $JKLM$ is a parallelogram, $JM \parallel LN$, $\angle LMN \equiv \angle LNM$</td>
<td>1. Given</td>
</tr>
<tr>
<td>2. $JK \equiv LM$, $JM \equiv LN$</td>
<td>2. Opposite sides of a parallelogram are congruent</td>
</tr>
<tr>
<td>3. $LM \equiv LN$</td>
<td>3. Isosceles Triangle Theorem</td>
</tr>
<tr>
<td>4. $LM \equiv JM$</td>
<td>4. Transitive Property</td>
</tr>
<tr>
<td>5. $JKLM$ is a rhombus</td>
<td>5. All sides are congruent</td>
</tr>
</tbody>
</table>
37 On the grid below, graph the points that are equidistant from both the x and y axes and the points that are 5 units from the origin. Label with an X all points that satisfy both conditions.
Part IV

Answer the question in this part. A correct answer will receive 6 credits. Clearly indicate the necessary steps, including appropriate formula substitutions, diagrams, graphs, charts, etc. A correct numerical answer with no work shown will receive only 1 credit. The answer should be written in pen. [6]

38 On the set of axes below, solve the following system of equations graphically for all values of x and y.

\[y = (x - 2)^2 + 4 \]
\[4x + 2y = 14 \]
\[y = -2x + 7 \]

vertex $\left(2, 4\right)$

(1, 5)