GEOMETRY (COMMON CORE)

The University of the State of New York

REGENTS HIGH SCHOOL EXAMINATION

GEOMETRY (Common Core)

Tuesday, June 2, 2015 — 1:15 to 4:15 p.m., only

Student Name:

School Name:

Print your name and the name of your school on the lines above.

A separate answer sheet for Part I has been provided to you. Follow the instructions from the proctor for completing the student information on your answer sheet.

This examination has four parts, with a total of 36 questions. You must answer all questions in this examination. Record your answers to the Part I multiple-choice questions on the separate answer sheet. Write your answers to the questions in Parts II, III, and IV directly in this booklet. All work should be written in pen, except for graphs and drawings, which should be done in pencil. Clearly indicate the necessary steps, including appropriate formula substitutions, diagrams, graphs, charts, etc. Utilize the information provided for each question to determine your answer. Note that diagrams are not necessarily drawn to scale.

The formulas that you may need to answer some questions in this examination are found at the end of the examination. This sheet is perforated so you may remove it from this booklet.

Scrap paper is not permitted for any part of this examination, but you may use the blank spaces in this booklet as scrap paper. A perforated sheet of scrap graph paper is provided at the end of this booklet for any question for which graphing may be helpful but is not required. You may remove this sheet from this booklet. Any work done on this sheet of scrap graph paper will not be scored.

When you have completed the examination, you must sign the statement printed at the end of the answer sheet, indicating that you had no unlawful knowledge of the questions or answers prior to the examination and that you have neither given nor received assistance in answering any of the questions during the examination. Your answer sheet cannot be accepted if you fail to sign this declaration.

Notice...
A graphing calculator, a straightedge (ruler), and a compass must be available for you to use while taking this examination.

DO NOT OPEN THIS EXAMINATION BOOKLET UNTIL THE SIGNAL IS GIVEN.
Part I

Answer all 24 questions in this part. Each correct answer will receive 2 credits. Utilize the information provided for each question to determine your answer. Note that diagrams are not necessarily drawn to scale. For each statement or question, choose the word or expression that, of those given, best completes the statement or answers the question. [48]

1 Which object is formed when right triangle RST shown below is rotated around leg RS?

(1) a pyramid with a square base (3) a right triangle
(2) an isosceles triangle (4) a cone

2 The vertices of \(\triangle JKL \) have coordinates \(J(5,1) \), \(K(-2,-3) \), and \(L(-4,1) \). Under which transformation is the image \(\triangle J'K'L' \) not congruent to \(\triangle JKL \)?

(1) a translation of two units to the right and two units down
(2) a counterclockwise rotation of 180 degrees around the origin
(3) a reflection over the x-axis
(4) a dilation with a scale factor of 2 and centered at the origin

3 The center of circle \(Q \) has coordinates \((3,-2) \). If circle \(Q \) passes through \(R(7,1) \), what is the length of its diameter?

(1) 50 (3) 10 \(r = \sqrt{(7-3)^2 + (1-(-2))^2} = \sqrt{16+9} = 5 \)
(2) 25 (4) 5

Use this space for computations.
4 In the diagram below, congruent figures 1, 2, and 3 are drawn.

Which sequence of transformations maps figure 1 onto figure 2 and then figure 2 onto figure 3?

(1) a reflection followed by a translation
(2) a rotation followed by a translation
(3) a translation followed by a reflection
(4) a translation followed by a rotation

5 As shown in the diagram below, the angle of elevation from a point on the ground to the top of the tree is 34°.

If the point is 20 feet from the base of the tree, what is the height of the tree, to the nearest tenth of a foot?

(1) 29.7
(2) 16.6
(3) 13.5
(4) 11.2
6 Which figure can have the same cross section as a sphere?

(1)
(3)
(2)
(4)

7 A shipping container is in the shape of a right rectangular prism with a length of 12 feet, a width of 8.5 feet, and a height of 4 feet. The container is completely filled with contents that weigh, on average, 0.25 pound per cubic foot. What is the weight, in pounds, of the contents in the container?

(1) 1,632
(2) 408
(3) 102
(4) 92

\[V = 12 \times 8.5 \times 4 = 408 \text{ ft}^3 \cdot \frac{0.25 \text{ lb}}{\text{ft}^3} = 102 \]
8. In the diagram of circle A shown below, chords CD and EF intersect at G, and chords CE and FD are drawn.

Which statement is not always true?

1. $CG = FG$
2. $\angle CEG = \angle FDC$
3. $\frac{CE}{EG} = \frac{FD}{DC}$
4. $\triangle CEG \sim \triangle FDG$

9. Which equation represents a line that is perpendicular to the line represented by $2x - y = 7$?

1. $y = -\frac{1}{2} x + 6$
2. $y = \frac{1}{2} x + 6$
3. $y = -2x + 6$
4. $y = 2x + 6$

$$M = \frac{-A}{B} = \frac{-2}{-1} = 2$$

$$M_{\perp} = -\frac{1}{2}$$
10 Which regular polygon has a minimum rotation of 45° to carry the polygon onto itself?

(1) octagon
(2) decagon
(3) hexagon
(4) pentagon

11 In the diagram of $\triangle ADC$ below, $EB \parallel DC$, $AE = 9$, $ED = 5$, and $AB = 9.2$.

What is the length of AC, to the nearest tenth?

(1) 5.1
(2) 5.2
(3) 14.3
(4) 14.4
12 In scalene triangle ABC shown in the diagram below, $\angle C = 90^\circ$.

Which equation is always true?

(1) $\sin A = \sin B$

(2) $\cos A = \cos B$

(3) $\cos A = \sin C$

(4) $\sin A = \cos B$

13 Quadrilateral $ABCD$ has diagonals AC and BD. Which information is not sufficient to prove $ABCD$ is a parallelogram?

(1) AC and BD bisect each other.

(2) $AB \cong CD$ and $BC \cong AD$

(3) $AB \cong CD$ and $AB \parallel CD$

(4) $AB \cong CD$ and $BC \parallel AD$

14 The equation of a circle is $x^2 + y^2 + 6y = 7$. What are the coordinates of the center and the length of the radius of the circle?

(1) center $(0,3)$ and radius 4

(2) center $(0,-3)$ and radius 4

(3) center $(0,3)$ and radius 16

(4) center $(0,-3)$ and radius 16

Use this space for computations.
15 Triangles ABC and DEF are drawn below.

If $AB = 9$, $BC = 15$, $DE = 6$, $EF = 10$, and $\angle B \cong \angle E$, which statement is true?

1. $\angle CAB \cong \angle DEF$
2. $\frac{AB}{BC} = \frac{FE}{DE}$
3. $\triangle ABC \sim \triangle DEF$
4. $\frac{AB}{BC} = \frac{DE}{EF}$

$\frac{9}{15} = \frac{6}{10}$

16 If $\triangle ABC$ is dilated by a scale factor of 3, which statement is true of the image $\triangle A'B'C'$?

1. $3A'B' = AB$
2. $B'C' = 3BC$
3. $m\angle A' = 3(m\angle A)$
4. $3(m\angle C') = m\angle C$
17 Steve drew line segments $ABCD$, EFG, BF, and CF as shown in the diagram below. Scalene $\triangle BFC$ is formed.

Which statement will allow Steve to prove $ABCD \parallel EFG$?

1. $\angle CFG \equiv \angle FCB$
2. $\angle ABF \equiv \angle BFC$
3. $\angle EFB \equiv \angle CFB$
4. $\angle CBF \equiv \angle GFC$

18 In the diagram below, CD is the image of AB after a dilation of scale factor k with center E.

Which ratio is equal to the scale factor k of the dilation?

1. $\frac{EC}{EA}$
2. $\frac{BA}{EA}$
3. $\frac{EA}{BA}$
4. $\frac{EA}{EC}$
19 A gallon of paint will cover approximately 450 square feet. An artist wants to paint all the outside surfaces of a cube measuring 12 feet on each edge. What is the least number of gallons of paint he must buy to paint the cube?

\[S = 6 \cdot 12^2 = \frac{864}{450} \approx 1.92 \]

(1) 1 (3) 3 (2) 2 (4) 4

20 In circle O shown below, diameter \(\overline{AC} \) is perpendicular to \(\overline{CD} \) at point C, and chords \(AB, BC, AE, \) and \(CE \) are drawn.

Which statement is not always true?

(1) \(\angle ACB \equiv \angle BCD \) (3) \(\angle BAC \equiv \angle DCB \)
(2) \(\angle ABC \equiv \angle ACD \) (4) \(\angle CBA \equiv \angle AEC \)

21 In the diagram below, \(\triangle ABC \sim \triangle DEC \).

If \(AC = 12, \) \(DC = 7, \) \(DE = 5, \) and the perimeter of \(\triangle ABC \) is 30, what is the perimeter of \(\triangle DEC? \)

(1) 12.5 (3) 14.8
(2) 14.0 (4) 17.5
22 The line $3y = -2x + 8$ is transformed by a dilation centered at the origin. Which linear equation could be its image?

\[\begin{align*}
(1) & \ 2x + 3y = 5 & (3) & \ 3x + 2y = 5 & & m = -\frac{2}{3} \\
(2) & \ 2x - 3y = 5 & (4) & \ 3x - 2y = 5 & & m = -\frac{2}{3} \frac{1}{2} \frac{3}{2} \\
\end{align*} \]

23 A circle with a radius of 5 was divided into 24 congruent sectors. The sectors were then rearranged, as shown in the diagram below.

To the nearest integer, the value of x is

\[\begin{align*}
(1) & \ 31 & (3) & \ 12 \\
(2) & \ 16 & (4) & \ 10 \\
\end{align*} \]

24 Which statement is sufficient evidence that $\triangle DEF$ is congruent to $\triangle ABC$?

\[\begin{align*}
(1) & \ AB = DE \text{ and } BC = EF & SS \\
(2) & \ \angle D \equiv \angle A, \ \angle B \equiv \angle E, \ \angle C \equiv \angle F & AA \ A A \\
(3) & \text{There is a sequence of rigid motions that maps } AB \text{ onto } DE, BC \text{ onto } EF, \text{ and } AC \text{ onto } DF. & SS S \\
(4) & \text{There is a sequence of rigid motions that maps point } A \text{ onto point } D, AB \text{ onto } DE, \text{ and } \angle B \text{ onto } \angle E. & S A \\
\end{align*} \]
Part II

Answer all 7 questions in this part. Each correct answer will receive 2 credits. Clearly indicate the necessary steps, including appropriate formula substitutions, diagrams, graphs, charts, etc. Utilize the information provided for each question to determine your answer. Note that diagrams are not necessarily drawn to scale. For all questions in this part, a correct numerical answer with no work shown will receive only 1 credit. All answers should be written in pen, except for graphs and drawings, which should be done in pencil. [14]

25 Use a compass and straightedge to construct an inscribed square in circle T shown below. [Leave all construction marks.]
26 The diagram below shows parallelogram $LMNO$ with diagonal \overline{LN}, $m\angle M = 118^\circ$, and $m\angle LNO = 22^\circ$.

Explain why $m\angle NLO$ is 40 degrees.

Opposite angles in a parallelogram are congruent, so $m\angle LNO = 118^\circ$. The interior angles of a triangle equal 180°.

$180^\circ - (118^\circ + 22^\circ) = 40^\circ$
27 The coordinates of the endpoints of \(\overline{AB} \) are \(A(-6, -5) \) and \(B(4, 0) \). Point \(P \) is on \(\overline{AB} \). Determine and state the coordinates of point \(P \), such that \(AP:PB \) is 2:3.

\[
\begin{align*}
-6 + \frac{2}{5} (4 - (-6)) &= \frac{5}{5} \\
-6 + \frac{2}{5} (10) &= \frac{5}{5} \\
-6 + 4 &= 0 \\
-2 &= -2
\end{align*}
\]

\[
\begin{align*}
-5 + \frac{2}{5} (0 - (-5)) &= \frac{5}{5} \\
-5 + \frac{2}{5} (5) &= \frac{5}{5} \\
-5 + 2 &= 0 \\
-3 &= -3
\end{align*}
\]

\((-2, -3)\)
28 The diagram below shows a ramp connecting the ground to a loading platform 4.5 feet above the ground. The ramp measures 11.75 feet from the ground to the top of the loading platform.

Determine and state, to the nearest degree, the angle of elevation formed by the ramp and the ground.

\[
\sin \chi = \frac{4.5}{11.75}
\]

\[
\chi \approx 23^\circ
\]
In the diagram below of circle O, the area of the shaded sector AOC is 12π in2 and the length of OA is 6 inches. Determine and state $m\angle AOC$.

$$A = \pi r^2$$

$$= 36\pi$$

$$36\pi \cdot \frac{x}{360} = 12\pi$$

$$x = 360 \cdot \frac{12}{36}$$

$$= 120$$
After a reflection over a line, $\triangle A'B'C'$ is the image of $\triangle ABC$. Explain why triangle ABC is congruent to triangle $A'B'C'$.

Reflections are rigid motions that preserve distance.
A flagpole casts a shadow 16.60 meters long. Tim stands at a distance of 12.45 meters from the base of the flagpole, such that the end of Tim’s shadow meets the end of the flagpole’s shadow. If Tim is 1.65 meters tall, determine and state the height of the flagpole to the nearest tenth of a meter.

\[
\frac{1.65}{4.15} = \frac{x}{16.6}
\]

\[4.15x = 27.39\]

\[x = 6.6\]
Answer all 3 questions in this part. Each correct answer will receive 4 credits. Clearly indicate the necessary steps, including appropriate formula substitutions, diagrams, graphs, charts, etc. Utilize the information provided for each question to determine your answer. Note that diagrams are not necessarily drawn to scale. For all questions in this part, a correct numerical answer with no work shown will receive only 1 credit. All answers should be written in pen, except for graphs and drawings, which should be done in pencil. \[12\]

32 In the diagram below, \(EF\) intersects \(\overline{AB}\) and \(\overline{CD}\) at \(G\) and \(H\), respectively, and \(\overline{GI}\) is drawn such that \(GH \equiv IH\).

If \(m\angle EGB = 50^\circ\) and \(m\angle DIG = 115^\circ\), explain why \(\overline{AB} \parallel \overline{CD}\).

Since linear angles are supplementary, \(m\angle GIH = 65\). Since \(GH \equiv IH\), \(m\angle GCH = 65\).

\(m\angle GCH = 50 (180 - (65+65))\). Since \(\angle EGB \equiv \angle GCH\), the corresponding angles formed by the transversal \(\overline{EF}\) lines are equal \(\Rightarrow \overline{AB} \parallel \overline{CD}\).
33 Given: Quadrilateral $ABCD$ is a parallelogram with diagonals AC and BD intersecting at E

![Diagram of parallelogram with diagonals intersecting at E]

<table>
<thead>
<tr>
<th>Statement</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) Quadrilateral $ABCD$ is a parallelogram; diagonals AC and BD intersect at E</td>
<td>1) Given</td>
</tr>
<tr>
<td>2) $AB \cong BC$</td>
<td>2) Opposite sides of a parallelogram are congruent</td>
</tr>
<tr>
<td>3) $\angle AED \cong \angle CEB$</td>
<td>3) Vertical angles are congruent</td>
</tr>
<tr>
<td>4) $BC \parallel DA$</td>
<td>4) Definition of parallelogram</td>
</tr>
<tr>
<td>5) $\angle DBC \cong \angle BDA$</td>
<td>5) Alternate interior angles are congruent</td>
</tr>
<tr>
<td>6) $\triangle AED \cong \triangle CEB$</td>
<td>6) AAS</td>
</tr>
</tbody>
</table>

Describe a single rigid motion that maps $\triangle AED$ onto $\triangle CEB$.

180° rotation of $\triangle AED$ around point E.
In the diagram below, the line of sight from the park ranger station, \(P \), to the lifeguard chair, \(L \), on the beach of a lake is perpendicular to the path joining the campground, \(C \), and the first aid station, \(F \). The campground is 0.25 mile from the lifeguard chair. The straight paths from both the campground and first aid station to the park ranger station are perpendicular.

If the path from the park ranger station to the campground is 0.55 mile, determine and state, to the nearest hundredth of a mile, the distance between the park ranger station and the lifeguard chair.

\[
x = \sqrt{0.55^2 - 0.25^2} \approx 0.49
\]

Gerald believes the distance from the first aid station to the campground is at least 1.5 miles. Is Gerald correct? Justify your answer.

\[
\text{No} \quad \frac{0.49^2}{0.25} = \frac{0.25y}{0.25} \quad \frac{0.9604}{0.25} \approx 3.85
\]

\[
0.9604 < 1.5
\]

\[
1.2104 \not< 1.5
\]
35 The water tower in the picture below is modeled by the two-dimensional figure beside it. The water tower is composed of a hemisphere, a cylinder, and a cone. Let C be the center of the hemisphere and let D be the center of the base of the cone.

\[
\tan 47^\circ \frac{x}{8.5} \\
x \approx 9.115
\]
Question 35 continued

If $AC = 8.5$ feet, $BF = 25$ feet, and $\angle EFD = 47^\circ$, determine and state, to the nearest cubic foot, the volume of the water tower.

\[
\text{Cone: } V = \frac{1}{3} \pi (8.5)^2 (9.115) \approx 689.6
\]

\[
\text{Cylinder: } V = \pi (8.5) (2.25) \approx 5674.5
\]

\[
\text{Hemisphere: } V = \frac{1}{2} \left(\frac{4}{3} \pi (8.5)^3 \right) \approx 1286.3
\]

\[
7650.4
\]

The water tower was constructed to hold a maximum of 400,000 pounds of water. If water weighs 62.4 pounds per cubic foot, can the water tower be filled to 85% of its volume and not exceed the weight limit? Justify your answer.

\[
\text{No: } 7650.624 \times 0.85 = 477,360
\]

\[
\frac{405,756}{400,000} > 1
\]
36 In the coordinate plane, the vertices of \(\triangle RST \) are \(R(6,-1), S(1,-4), \) and \(T(-5,6) \).
Prove that \(\triangle RST \) is a right triangle.
[The use of the set of axes on the next page is optional.]

\[
m_{TS} = -\frac{10}{6} = -\frac{5}{3} \quad \text{Since the slopes of } TS \quad \text{and } ST \text{ are opposite}
\]
\[
m_{ST} = \frac{2}{5} \quad \text{reciprocals, they are} \quad \text{perpendicular and form a}
\]
\text{right angle.} \quad \triangle RST \quad \text{is a right triangle as } \angle S
\text{ is a right angle.}

State the coordinates of point \(P \) such that quadrilateral \(RSTP \) is a rectangle.

\[(0, q) \]

Question 36 is continued on the next page.
Question 36 continued

Prove that your quadrilateral RSTP is a rectangle.
[The use of the set of axes below is optional.]

Since the slopes of all four adjacent sides (\overline{RS}, \overline{ST}, \overline{TP}, \overline{PR}) are opposite reciprocals, they are perpendicular to form right angles. Quadrilateral RSTP is a rectangle because it has four right angles.